LMC中四个轨道周期长期递减的大质量半独立双星的演化状态和三重性

Fu-Xing Li, Sheng-Bang Qian, Li-ying Zhu, Wen-Ping Liao, Er-gang Zhao, Min-Yu Li, Qi-Bin Sun, Lin-Feng Chang and Wen-Xu Lin
{"title":"LMC中四个轨道周期长期递减的大质量半独立双星的演化状态和三重性","authors":"Fu-Xing Li, Sheng-Bang Qian, Li-ying Zhu, Wen-Ping Liao, Er-gang Zhao, Min-Yu Li, Qi-Bin Sun, Lin-Feng Chang and Wen-Xu Lin","doi":"10.3847/1538-4357/ad855e","DOIUrl":null,"url":null,"abstract":"The massive semidetached binary with a long-term decreasing orbital period may involve a rapid mass-transfer phase in Case A, and thus, they are good astrophysical laboratories for investigating the evolution of massive binary stars. In this work, by using the long-term observational light curves from the Optical Gravitational Lensing Experiment project and other data in the low-metallicity Large Magellanic Cloud, four semidetached massive binaries with long-term decreases in the orbital periods are detected from 165 EB-type close binaries. It is found that the more massive component in S07798 is filling its Roche lobe, where the period decrease is caused by mass transfer from the primary to the secondary. However, the other three (S03065, S12631, S16873) are semidetached binaries with a lobe-filling secondary where the mass transfer between the components should cause the period to increase if the angular momentum is conservative. The long-term period decreases in these three systems may be caused by angular momentum loss. Additionally, the orbital periods of three systems (S03065, S07798, S16873) are detected to show cyclic variation with periods shorter than 11 yr, which can be plausibly explained by the presence of close-in third bodies in these massive binaries. Based on all of these results, it is suggested that the detected four semidetached binaries almost have multiplicity. The companion stars are crucial for the origin and evolution of these massive close binaries.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary States and Triplicity of Four Massive Semidetached Binaries with Long-term Decreasing Orbital Periods in the LMC\",\"authors\":\"Fu-Xing Li, Sheng-Bang Qian, Li-ying Zhu, Wen-Ping Liao, Er-gang Zhao, Min-Yu Li, Qi-Bin Sun, Lin-Feng Chang and Wen-Xu Lin\",\"doi\":\"10.3847/1538-4357/ad855e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The massive semidetached binary with a long-term decreasing orbital period may involve a rapid mass-transfer phase in Case A, and thus, they are good astrophysical laboratories for investigating the evolution of massive binary stars. In this work, by using the long-term observational light curves from the Optical Gravitational Lensing Experiment project and other data in the low-metallicity Large Magellanic Cloud, four semidetached massive binaries with long-term decreases in the orbital periods are detected from 165 EB-type close binaries. It is found that the more massive component in S07798 is filling its Roche lobe, where the period decrease is caused by mass transfer from the primary to the secondary. However, the other three (S03065, S12631, S16873) are semidetached binaries with a lobe-filling secondary where the mass transfer between the components should cause the period to increase if the angular momentum is conservative. The long-term period decreases in these three systems may be caused by angular momentum loss. Additionally, the orbital periods of three systems (S03065, S07798, S16873) are detected to show cyclic variation with periods shorter than 11 yr, which can be plausibly explained by the presence of close-in third bodies in these massive binaries. Based on all of these results, it is suggested that the detected four semidetached binaries almost have multiplicity. The companion stars are crucial for the origin and evolution of these massive close binaries.\",\"PeriodicalId\":501813,\"journal\":{\"name\":\"The Astrophysical Journal\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/ad855e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad855e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

轨道周期长期下降的大质量半独立双星在情况A中可能涉及一个快速的质量转移阶段,因此,它们是研究大质量双星演化的良好天体物理实验室。在这项工作中,利用光学引力透镜实验项目的长期观测光曲线以及低金属度大麦哲伦云的其他数据,从165颗EB型近双星中探测到了4颗轨道周期长期下降的半独立大质量双星。研究发现,S07798中质量较大的成分正在填充其罗氏叶,而周期的下降是由质量从主星转移到副星造成的。然而,其他三个(S03065、S12631、S16873)都是半独立双星,其次级填满了罗切叶,如果角动量是保守的,成分之间的质量转移应该会导致周期增加。这三个系统的长期周期下降可能是由角动量损失造成的。此外,检测到三个系统(S03065、S07798、S16873)的轨道周期呈现周期性变化,周期短于11年,这可以用这些大质量双星中存在近邻第三体来解释。基于所有这些结果,我们认为探测到的四个半独立双星几乎都具有多重性。伴星对于这些大质量近双星的起源和演化至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary States and Triplicity of Four Massive Semidetached Binaries with Long-term Decreasing Orbital Periods in the LMC
The massive semidetached binary with a long-term decreasing orbital period may involve a rapid mass-transfer phase in Case A, and thus, they are good astrophysical laboratories for investigating the evolution of massive binary stars. In this work, by using the long-term observational light curves from the Optical Gravitational Lensing Experiment project and other data in the low-metallicity Large Magellanic Cloud, four semidetached massive binaries with long-term decreases in the orbital periods are detected from 165 EB-type close binaries. It is found that the more massive component in S07798 is filling its Roche lobe, where the period decrease is caused by mass transfer from the primary to the secondary. However, the other three (S03065, S12631, S16873) are semidetached binaries with a lobe-filling secondary where the mass transfer between the components should cause the period to increase if the angular momentum is conservative. The long-term period decreases in these three systems may be caused by angular momentum loss. Additionally, the orbital periods of three systems (S03065, S07798, S16873) are detected to show cyclic variation with periods shorter than 11 yr, which can be plausibly explained by the presence of close-in third bodies in these massive binaries. Based on all of these results, it is suggested that the detected four semidetached binaries almost have multiplicity. The companion stars are crucial for the origin and evolution of these massive close binaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信