{"title":"用于高性能锂金属电池的具有 Li+ 导电通道的宏观均匀界面层","authors":"Qian Chen, Binyin Gao, Zhilin Yang, Yong Li, QingWei Zhai, Yangyu Jia, Qiannan Zhang, Xiaokang Gu, Jinghan Zuo, Lei Wang, Tianshuai Wang, Pengbo Zhai, Cheng Yang, Yongji Gong","doi":"10.1038/s41467-024-54310-1","DOIUrl":null,"url":null,"abstract":"<p>The numerous grainboundaries solid electrolyte interface, whether naturally occurring or artificially designed, leads to non-uniform Li metal deposition and consequently results in poor full-battery performance. Herein, a lithium-ion selective transport layer is reported to achieve a highly efficient and dendrite-free lithium metal anode. The layer-by-layer assembled protonated carbon nitride nanosheets present uniform macroscopical structure without grainboundaries. The carbon nitride with ordered pores in basal plane provides high-speed lithium-ion transport channels with low tortuosity. Consequently, the assembled 324 Wh kg<sup>−1</sup> pouch cell exhibits 300 stable cycles with a capacity retention of 90.0% and an average Coulombic efficiency up to 99.7%. The ultra-dense Li metal anode makes current collector-free anode possible, achieving high energy density and long cycle life of a 7 Ah cell (506 Wh kg<sup>−1</sup>, 160 cycles). Thus, it is proved that a macroscopically uniform interface layer with lithium-ion conductive channels could achieve Li metal battery with promising application potential.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"14 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macroscopically uniform interface layer with Li+ conductive channels for high-performance Li metal batteries\",\"authors\":\"Qian Chen, Binyin Gao, Zhilin Yang, Yong Li, QingWei Zhai, Yangyu Jia, Qiannan Zhang, Xiaokang Gu, Jinghan Zuo, Lei Wang, Tianshuai Wang, Pengbo Zhai, Cheng Yang, Yongji Gong\",\"doi\":\"10.1038/s41467-024-54310-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The numerous grainboundaries solid electrolyte interface, whether naturally occurring or artificially designed, leads to non-uniform Li metal deposition and consequently results in poor full-battery performance. Herein, a lithium-ion selective transport layer is reported to achieve a highly efficient and dendrite-free lithium metal anode. The layer-by-layer assembled protonated carbon nitride nanosheets present uniform macroscopical structure without grainboundaries. The carbon nitride with ordered pores in basal plane provides high-speed lithium-ion transport channels with low tortuosity. Consequently, the assembled 324 Wh kg<sup>−1</sup> pouch cell exhibits 300 stable cycles with a capacity retention of 90.0% and an average Coulombic efficiency up to 99.7%. The ultra-dense Li metal anode makes current collector-free anode possible, achieving high energy density and long cycle life of a 7 Ah cell (506 Wh kg<sup>−1</sup>, 160 cycles). Thus, it is proved that a macroscopically uniform interface layer with lithium-ion conductive channels could achieve Li metal battery with promising application potential.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54310-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54310-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Macroscopically uniform interface layer with Li+ conductive channels for high-performance Li metal batteries
The numerous grainboundaries solid electrolyte interface, whether naturally occurring or artificially designed, leads to non-uniform Li metal deposition and consequently results in poor full-battery performance. Herein, a lithium-ion selective transport layer is reported to achieve a highly efficient and dendrite-free lithium metal anode. The layer-by-layer assembled protonated carbon nitride nanosheets present uniform macroscopical structure without grainboundaries. The carbon nitride with ordered pores in basal plane provides high-speed lithium-ion transport channels with low tortuosity. Consequently, the assembled 324 Wh kg−1 pouch cell exhibits 300 stable cycles with a capacity retention of 90.0% and an average Coulombic efficiency up to 99.7%. The ultra-dense Li metal anode makes current collector-free anode possible, achieving high energy density and long cycle life of a 7 Ah cell (506 Wh kg−1, 160 cycles). Thus, it is proved that a macroscopically uniform interface layer with lithium-ion conductive channels could achieve Li metal battery with promising application potential.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.