{"title":"受脉冲热通量作用的压电棒中的广义压热弹性相互作用","authors":"Zuhur Alqahtani, Ibrahim Abbas, Alaa A. El-Bary","doi":"10.1515/jnet-2024-0077","DOIUrl":null,"url":null,"abstract":"This work investigates, using the Laplace transforms, the influence of thermal relaxation time in the piezo-thermoelastic rod under pulse heat flux. For the piezoelectric medium, the generalized piezothermoelastic fundamental equations are developed. The analytical solutions are expressed in the transformation domain using Laplace transforms. Laplace transforms are presented to solve the problem’s governing equations, removing the time impact and yielding analytical solutions for the temperature, electric field, displacement, and stresses in the Laplace domain. The time domain solutions of the variables under consideration are then found using numerical Laplace inversion and visually shown. The effects of the thermal time, pulse heating flux characteristic time, and constant heat flux are studied in a piezoelectric thermoelastic medium. The figures show that the thermal time, pulse heating flux characteristic time, and constant heat flux play significant roles in determining the values of all physical quantities.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"14 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized piezothermoelastic interactions in a piezoelectric rod subjected to pulse heat flux\",\"authors\":\"Zuhur Alqahtani, Ibrahim Abbas, Alaa A. El-Bary\",\"doi\":\"10.1515/jnet-2024-0077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigates, using the Laplace transforms, the influence of thermal relaxation time in the piezo-thermoelastic rod under pulse heat flux. For the piezoelectric medium, the generalized piezothermoelastic fundamental equations are developed. The analytical solutions are expressed in the transformation domain using Laplace transforms. Laplace transforms are presented to solve the problem’s governing equations, removing the time impact and yielding analytical solutions for the temperature, electric field, displacement, and stresses in the Laplace domain. The time domain solutions of the variables under consideration are then found using numerical Laplace inversion and visually shown. The effects of the thermal time, pulse heating flux characteristic time, and constant heat flux are studied in a piezoelectric thermoelastic medium. The figures show that the thermal time, pulse heating flux characteristic time, and constant heat flux play significant roles in determining the values of all physical quantities.\",\"PeriodicalId\":16428,\"journal\":{\"name\":\"Journal of Non-Equilibrium Thermodynamics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Equilibrium Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/jnet-2024-0077\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2024-0077","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Generalized piezothermoelastic interactions in a piezoelectric rod subjected to pulse heat flux
This work investigates, using the Laplace transforms, the influence of thermal relaxation time in the piezo-thermoelastic rod under pulse heat flux. For the piezoelectric medium, the generalized piezothermoelastic fundamental equations are developed. The analytical solutions are expressed in the transformation domain using Laplace transforms. Laplace transforms are presented to solve the problem’s governing equations, removing the time impact and yielding analytical solutions for the temperature, electric field, displacement, and stresses in the Laplace domain. The time domain solutions of the variables under consideration are then found using numerical Laplace inversion and visually shown. The effects of the thermal time, pulse heating flux characteristic time, and constant heat flux are studied in a piezoelectric thermoelastic medium. The figures show that the thermal time, pulse heating flux characteristic time, and constant heat flux play significant roles in determining the values of all physical quantities.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.