异质高价铁(IV)-氧的配位工程,通过类似芬顿的强力反应安全去除污染物

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yuanfang Lin, Ying Wang, Zongling Weng, Yang Zhou, Siqi Liu, Xinwen Ou, Xing Xu, Yanpeng Cai, Jin Jiang, Bin Han, Zhifeng Yang
{"title":"异质高价铁(IV)-氧的配位工程,通过类似芬顿的强力反应安全去除污染物","authors":"Yuanfang Lin, Ying Wang, Zongling Weng, Yang Zhou, Siqi Liu, Xinwen Ou, Xing Xu, Yanpeng Cai, Jin Jiang, Bin Han, Zhifeng Yang","doi":"10.1038/s41467-024-54225-x","DOIUrl":null,"url":null,"abstract":"<p>Coordination engineering of high-valent Fe(IV)-oxo (Fe<sup>IV</sup>=O) is expected to break the activity-selectivity trade-off of traditional reactive oxygen species, while attempts to regulate the oxidation behaviors of heterogeneous Fe<sup>IV</sup>=O remain unexplored. Here, by coordination engineering of Fe-N<sub>x</sub> single-atom catalysts (Fe-N<sub>x</sub> SACs), we propose a feasible approach to regulate the oxidation behaviors of heterogeneous Fe<sup>IV</sup>=O. The developed Fe-N<sub>2</sub> SACs/peroxymonosulfate (PMS) system delivers boosted performance for Fe<sup>IV</sup>=O generation, and thereby can selectively remove a range of pollutants within tens of seconds. In-situ spectra and theoretical simulations suggest that low-coordination Fe-N<sub>x</sub> SACs favor the generation of Fe<sup>IV</sup>=O via PMS activation as providing more electrons to facilitate the desorption of the key <sup>*</sup>SO<sub>4</sub>H intermediate. Due to their disparate attacking sites to sulfamethoxazole (SMX) molecules, Fe-N<sub>2</sub> SACs mediated Fe<sup>IV</sup>=O (Fe<sup>IV</sup>N<sub>2</sub>=O) oxidize SMX to small molecules with less toxicity, while Fe<sup>IV</sup>N<sub>4</sub>=O produces series of more toxic azo compounds through N-N coupling with more complex oxidation pathways.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"112 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coordination engineering of heterogeneous high-valent Fe(IV)-oxo for safe removal of pollutants via powerful Fenton-like reactions\",\"authors\":\"Yuanfang Lin, Ying Wang, Zongling Weng, Yang Zhou, Siqi Liu, Xinwen Ou, Xing Xu, Yanpeng Cai, Jin Jiang, Bin Han, Zhifeng Yang\",\"doi\":\"10.1038/s41467-024-54225-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Coordination engineering of high-valent Fe(IV)-oxo (Fe<sup>IV</sup>=O) is expected to break the activity-selectivity trade-off of traditional reactive oxygen species, while attempts to regulate the oxidation behaviors of heterogeneous Fe<sup>IV</sup>=O remain unexplored. Here, by coordination engineering of Fe-N<sub>x</sub> single-atom catalysts (Fe-N<sub>x</sub> SACs), we propose a feasible approach to regulate the oxidation behaviors of heterogeneous Fe<sup>IV</sup>=O. The developed Fe-N<sub>2</sub> SACs/peroxymonosulfate (PMS) system delivers boosted performance for Fe<sup>IV</sup>=O generation, and thereby can selectively remove a range of pollutants within tens of seconds. In-situ spectra and theoretical simulations suggest that low-coordination Fe-N<sub>x</sub> SACs favor the generation of Fe<sup>IV</sup>=O via PMS activation as providing more electrons to facilitate the desorption of the key <sup>*</sup>SO<sub>4</sub>H intermediate. Due to their disparate attacking sites to sulfamethoxazole (SMX) molecules, Fe-N<sub>2</sub> SACs mediated Fe<sup>IV</sup>=O (Fe<sup>IV</sup>N<sub>2</sub>=O) oxidize SMX to small molecules with less toxicity, while Fe<sup>IV</sup>N<sub>4</sub>=O produces series of more toxic azo compounds through N-N coupling with more complex oxidation pathways.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54225-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54225-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

高价铁(IV)-氧化物(FeIV=O)的配位工程有望打破传统活性氧的活性-选择性权衡,而调节异质 FeIV=O 氧化行为的尝试仍有待探索。在此,我们通过对 Fe-Nx 单原子催化剂(Fe-Nx SACs)进行配位工程,提出了一种调节异相 FeIV=O 氧化行为的可行方法。所开发的 Fe-N2 SACs/peroxymonosulfate (PMS) 系统提高了生成 FeIV=O 的性能,从而能在数十秒内选择性地去除一系列污染物。原位光谱和理论模拟表明,低配位的 Fe-Nx SAC 有利于通过 PMS 激活生成 FeIV=O,因为它提供了更多的电子来促进关键 *SO4H 中间体的解吸。由于它们对磺胺甲噁唑(SMX)分子的攻击位点不同,Fe-N2 SACs 介导的 FeIV=O (FeIVN2=O)可将 SMX 氧化成毒性较低的小分子,而 FeIVN4=O 则通过 N-N 偶联产生一系列毒性较高的偶氮化合物,氧化途径更为复杂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Coordination engineering of heterogeneous high-valent Fe(IV)-oxo for safe removal of pollutants via powerful Fenton-like reactions

Coordination engineering of heterogeneous high-valent Fe(IV)-oxo for safe removal of pollutants via powerful Fenton-like reactions

Coordination engineering of high-valent Fe(IV)-oxo (FeIV=O) is expected to break the activity-selectivity trade-off of traditional reactive oxygen species, while attempts to regulate the oxidation behaviors of heterogeneous FeIV=O remain unexplored. Here, by coordination engineering of Fe-Nx single-atom catalysts (Fe-Nx SACs), we propose a feasible approach to regulate the oxidation behaviors of heterogeneous FeIV=O. The developed Fe-N2 SACs/peroxymonosulfate (PMS) system delivers boosted performance for FeIV=O generation, and thereby can selectively remove a range of pollutants within tens of seconds. In-situ spectra and theoretical simulations suggest that low-coordination Fe-Nx SACs favor the generation of FeIV=O via PMS activation as providing more electrons to facilitate the desorption of the key *SO4H intermediate. Due to their disparate attacking sites to sulfamethoxazole (SMX) molecules, Fe-N2 SACs mediated FeIV=O (FeIVN2=O) oxidize SMX to small molecules with less toxicity, while FeIVN4=O produces series of more toxic azo compounds through N-N coupling with more complex oxidation pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信