Tamanna Khan, Terry McAfee, Thomas J. Ferron, Awwad Alotaibi, Brian A. Collins
{"title":"有机配位离子电子传输的局部化学增强和门控","authors":"Tamanna Khan, Terry McAfee, Thomas J. Ferron, Awwad Alotaibi, Brian A. Collins","doi":"10.1002/adma.202406281","DOIUrl":null,"url":null,"abstract":"Superior properties in organic mixed ionic-electronic conductors (OMIECs) over inorganic counterparts have inspired intense interest in biosensing, soft-robotics, neuromorphic computing, and smart medicine. However, slow ion transport relative to charge transport in these materials is a limiting factor. Here, it is demonstrated that hydrophilic molecules local to an interfacial OMIEC nanochannel can accelerate ion transport with ion mobilities surpassing electrophoretic transport by more than an order of magnitude. Furthermore, ion access to this interfacial channel can be gated through local surface energy. This mechanism is applied in a novel sensing device, which electronically detects and characterizes chemical reaction dynamics local to the buried channel. The ability to enhance ion transport at the nanoscale in OMIECs as well as govern ion transport through local chemical signaling enables new functionalities for printable, stretchable, and biocompatible mixed conduction devices.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"42 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Chemical Enhancement and Gating of Organic Coordinated Ionic-Electronic Transport\",\"authors\":\"Tamanna Khan, Terry McAfee, Thomas J. Ferron, Awwad Alotaibi, Brian A. Collins\",\"doi\":\"10.1002/adma.202406281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Superior properties in organic mixed ionic-electronic conductors (OMIECs) over inorganic counterparts have inspired intense interest in biosensing, soft-robotics, neuromorphic computing, and smart medicine. However, slow ion transport relative to charge transport in these materials is a limiting factor. Here, it is demonstrated that hydrophilic molecules local to an interfacial OMIEC nanochannel can accelerate ion transport with ion mobilities surpassing electrophoretic transport by more than an order of magnitude. Furthermore, ion access to this interfacial channel can be gated through local surface energy. This mechanism is applied in a novel sensing device, which electronically detects and characterizes chemical reaction dynamics local to the buried channel. The ability to enhance ion transport at the nanoscale in OMIECs as well as govern ion transport through local chemical signaling enables new functionalities for printable, stretchable, and biocompatible mixed conduction devices.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202406281\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202406281","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Local Chemical Enhancement and Gating of Organic Coordinated Ionic-Electronic Transport
Superior properties in organic mixed ionic-electronic conductors (OMIECs) over inorganic counterparts have inspired intense interest in biosensing, soft-robotics, neuromorphic computing, and smart medicine. However, slow ion transport relative to charge transport in these materials is a limiting factor. Here, it is demonstrated that hydrophilic molecules local to an interfacial OMIEC nanochannel can accelerate ion transport with ion mobilities surpassing electrophoretic transport by more than an order of magnitude. Furthermore, ion access to this interfacial channel can be gated through local surface energy. This mechanism is applied in a novel sensing device, which electronically detects and characterizes chemical reaction dynamics local to the buried channel. The ability to enhance ion transport at the nanoscale in OMIECs as well as govern ion transport through local chemical signaling enables new functionalities for printable, stretchable, and biocompatible mixed conduction devices.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.