某些莫兰量纲上无限正交集的充分必要条件

IF 0.6 3区 数学 Q3 MATHEMATICS
S. Chen, J.-C. Liu, J. Su, S. Wu
{"title":"某些莫兰量纲上无限正交集的充分必要条件","authors":"S. Chen,&nbsp;J.-C. Liu,&nbsp;J. Su,&nbsp;S. Wu","doi":"10.1007/s10474-024-01458-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this work we shall concentrate on fractal-harmonic analysis of a class of Moran measures. Let <span>\\(\\{M_n\\}_{n=1}^{\\infty}\\)</span> be a sequence of expanding matrix in <span>\\(M_2(\\mathbb{Z})\\)</span> and\n<span>\\(\\{D_n\\}_{n=1}^{\\infty}\\)</span> be a sequence of non-collinear integer digit sets satisfying \n</p><div><div><span>$$D_n= \\left\\{\\begin{pmatrix}0\\\\0\\end{pmatrix},\\begin{pmatrix}\\alpha_{n1}\\\\\\alpha_{n2}\\end{pmatrix},\\begin{pmatrix}\\beta_{n1}\\\\\\beta_{n2}\\end{pmatrix},\\begin{pmatrix}-\\alpha_{n1}-\\beta_{n1}\\\\-\\alpha_{n2}-\\beta_{n2}\\end{pmatrix} \\right\\}.$$</span></div></div><p>\nThe associated Moran-type measure <span>\\(\\mu_{\\{M_n\\},\\{D_n\\}}\\)</span>\n is generated by the infinite convolution\n</p><div><div><span>$$\\mu_{\\{M_n\\},\\{D_n\\}}=\\delta_{M_{1}^{-1}D_1}\\ast\\delta_{M_{1}^{-1}M_{2}^{-1}D_2}\\ast\\delta_{M_{1}^{-1}M_{2}^{-1} M_{3}^{-1}D_3}\\ast\\cdots$$</span></div></div><p>\nin the weak<span>\\(^*\\)</span>\n-topology. Our result shows that if <span>\\(\\{\\alpha_{n1}\\alpha_{n2}\\beta_{n1}\\beta_{n2}\\}_{n=1}^{\\infty}\\)</span>\n is bounded, then <span>\\(L^{2}(\\mu_{\\{M_n\\},\\{D_n\\}})\\)</span>\n admits an infinite orthogonal set of exponential functions if and only if there exists a subsequence <span>\\(\\{n_{k}\\}_{k=1}^{\\infty}\\)</span>\n of <span>\\(\\{n_{k}\\}_{k=1}^{\\infty}\\)</span>\n such that <span>\\(\\det(M_{n_{k}})\\in 2\\mathbb{Z}\\)</span>\n.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"174 1","pages":"247 - 265"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sufficient and necessary condition for infinite orthogonal sets on some Moran measures\",\"authors\":\"S. Chen,&nbsp;J.-C. Liu,&nbsp;J. Su,&nbsp;S. Wu\",\"doi\":\"10.1007/s10474-024-01458-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work we shall concentrate on fractal-harmonic analysis of a class of Moran measures. Let <span>\\\\(\\\\{M_n\\\\}_{n=1}^{\\\\infty}\\\\)</span> be a sequence of expanding matrix in <span>\\\\(M_2(\\\\mathbb{Z})\\\\)</span> and\\n<span>\\\\(\\\\{D_n\\\\}_{n=1}^{\\\\infty}\\\\)</span> be a sequence of non-collinear integer digit sets satisfying \\n</p><div><div><span>$$D_n= \\\\left\\\\{\\\\begin{pmatrix}0\\\\\\\\0\\\\end{pmatrix},\\\\begin{pmatrix}\\\\alpha_{n1}\\\\\\\\\\\\alpha_{n2}\\\\end{pmatrix},\\\\begin{pmatrix}\\\\beta_{n1}\\\\\\\\\\\\beta_{n2}\\\\end{pmatrix},\\\\begin{pmatrix}-\\\\alpha_{n1}-\\\\beta_{n1}\\\\\\\\-\\\\alpha_{n2}-\\\\beta_{n2}\\\\end{pmatrix} \\\\right\\\\}.$$</span></div></div><p>\\nThe associated Moran-type measure <span>\\\\(\\\\mu_{\\\\{M_n\\\\},\\\\{D_n\\\\}}\\\\)</span>\\n is generated by the infinite convolution\\n</p><div><div><span>$$\\\\mu_{\\\\{M_n\\\\},\\\\{D_n\\\\}}=\\\\delta_{M_{1}^{-1}D_1}\\\\ast\\\\delta_{M_{1}^{-1}M_{2}^{-1}D_2}\\\\ast\\\\delta_{M_{1}^{-1}M_{2}^{-1} M_{3}^{-1}D_3}\\\\ast\\\\cdots$$</span></div></div><p>\\nin the weak<span>\\\\(^*\\\\)</span>\\n-topology. Our result shows that if <span>\\\\(\\\\{\\\\alpha_{n1}\\\\alpha_{n2}\\\\beta_{n1}\\\\beta_{n2}\\\\}_{n=1}^{\\\\infty}\\\\)</span>\\n is bounded, then <span>\\\\(L^{2}(\\\\mu_{\\\\{M_n\\\\},\\\\{D_n\\\\}})\\\\)</span>\\n admits an infinite orthogonal set of exponential functions if and only if there exists a subsequence <span>\\\\(\\\\{n_{k}\\\\}_{k=1}^{\\\\infty}\\\\)</span>\\n of <span>\\\\(\\\\{n_{k}\\\\}_{k=1}^{\\\\infty}\\\\)</span>\\n such that <span>\\\\(\\\\det(M_{n_{k}})\\\\in 2\\\\mathbb{Z}\\\\)</span>\\n.</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"174 1\",\"pages\":\"247 - 265\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01458-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01458-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们将专注于一类莫兰量纲的分形谐波分析。让(\{M_n\}_{n=1}^{\infty}\)是\(M_2(mathbb{Z})\)中的扩展矩阵序列,并且(\{D_n\}_{n=1}^{\infty}\)是满足$$D_n= \left\{\begin{pmatrix}0\0end{pmatrix}的非共线整数集合序列、\begin{pmatrix}\alpha_{n1}\\\alpha_{n2}\end{pmatrix},\begin{pmatrix}\beta_{n1}\\\beta_{n2}\end{pmatrix},\begin{pmatrix}-\alpha_{n1}-\beta_{n1}\\-\alpha_{n2}-\beta_{n2}\end{pmatrix}\right\}。$$相关的莫兰型度量(\mu_{\{M_n\},\{D_n\}})是由无限卷积$$\mu_{\{M_n\}、\{D_n\}}=\delta_{M_{1}^{-1}D_1}\ast\delta_{M_{1}^{-1}M_{2}^{-1}D_2}\ast\delta_{M_{1}^{-1}M_{2}^{-1} M_{3}^{-1}D_3}\ast\cdots$$in the weak\(^*\)-topology.我们的结果表明,如果 \({\alpha_{n1}\alpha_{n2}\beta_{n1}\beta_{n2}\}_{n=1}^{infty}\) 是有界的,那么 \(L^{2}(\mu_\{M_n\}、\如果并且只有当 \(\{n_{k}\}_{k=1}^{infty\}) 的子序列 \(\{n_{k}\}_{k=1}^{infty\}) 存在,使得 \(\det(M_{n_{k}}}\in 2\mathbb{Z}\}) 允许一个无限正交的指数函数集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A sufficient and necessary condition for infinite orthogonal sets on some Moran measures

In this work we shall concentrate on fractal-harmonic analysis of a class of Moran measures. Let \(\{M_n\}_{n=1}^{\infty}\) be a sequence of expanding matrix in \(M_2(\mathbb{Z})\) and \(\{D_n\}_{n=1}^{\infty}\) be a sequence of non-collinear integer digit sets satisfying

$$D_n= \left\{\begin{pmatrix}0\\0\end{pmatrix},\begin{pmatrix}\alpha_{n1}\\\alpha_{n2}\end{pmatrix},\begin{pmatrix}\beta_{n1}\\\beta_{n2}\end{pmatrix},\begin{pmatrix}-\alpha_{n1}-\beta_{n1}\\-\alpha_{n2}-\beta_{n2}\end{pmatrix} \right\}.$$

The associated Moran-type measure \(\mu_{\{M_n\},\{D_n\}}\) is generated by the infinite convolution

$$\mu_{\{M_n\},\{D_n\}}=\delta_{M_{1}^{-1}D_1}\ast\delta_{M_{1}^{-1}M_{2}^{-1}D_2}\ast\delta_{M_{1}^{-1}M_{2}^{-1} M_{3}^{-1}D_3}\ast\cdots$$

in the weak\(^*\) -topology. Our result shows that if \(\{\alpha_{n1}\alpha_{n2}\beta_{n1}\beta_{n2}\}_{n=1}^{\infty}\) is bounded, then \(L^{2}(\mu_{\{M_n\},\{D_n\}})\) admits an infinite orthogonal set of exponential functions if and only if there exists a subsequence \(\{n_{k}\}_{k=1}^{\infty}\) of \(\{n_{k}\}_{k=1}^{\infty}\) such that \(\det(M_{n_{k}})\in 2\mathbb{Z}\) .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信