{"title":"弯曲加载下香蕉/拉米/环氧复合材料失效模式的声发射表征","authors":"M. Saleem, B. Shahul Hamid Khan, V. Arumugam","doi":"10.1007/s10570-024-06189-w","DOIUrl":null,"url":null,"abstract":"<div><p>A sufficient understanding of the failure mechanisms that govern the mechanical behavior and failure modes of natural fiber composites is essential. In this regard, acoustic emission (AE) is a potential technique to monitor the mechanical behaviour and to provide the required information about the failure mechanism of natural fiber-reinforced polymer composites. The purpose and novelty of this study is to investigate for first time, the fracture behaviour of banana/ramie/epoxy composites under a 3-point bending test. During the test procedure, the AE parameters were recorded to evaluate the crack growth from the initial crack to the final fracture of the specimen and to determine the damage locations. AE parameters, such as amplitude, frequency, cumulative hits, and AE energy distributions, were used to identify the failure mechanisms associated with matrix cracking, delamination, fiber-matrix debonding, and fiber breakage. Based on these findings, the cumulative effect of AE events (counts/hits) represents the stress risers that cause failure in the specimen. Because natural fiber composites are brittle materials, they weaken when subjected to tensile loads. For this reason, the outermost bottom layer experienced more failure than the compressive layers during the bending of the specimen. The failure modes were studied using scanning electron microscopy. It was observed from the AE activity that the stress level at the crack initiation is 10–15% higher than the stress magnitude at the fracture stage.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"31 17","pages":"10423 - 10444"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustic emission characterization of failure modes in banana/ramie/epoxy composites under flexural loading\",\"authors\":\"M. Saleem, B. Shahul Hamid Khan, V. Arumugam\",\"doi\":\"10.1007/s10570-024-06189-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A sufficient understanding of the failure mechanisms that govern the mechanical behavior and failure modes of natural fiber composites is essential. In this regard, acoustic emission (AE) is a potential technique to monitor the mechanical behaviour and to provide the required information about the failure mechanism of natural fiber-reinforced polymer composites. The purpose and novelty of this study is to investigate for first time, the fracture behaviour of banana/ramie/epoxy composites under a 3-point bending test. During the test procedure, the AE parameters were recorded to evaluate the crack growth from the initial crack to the final fracture of the specimen and to determine the damage locations. AE parameters, such as amplitude, frequency, cumulative hits, and AE energy distributions, were used to identify the failure mechanisms associated with matrix cracking, delamination, fiber-matrix debonding, and fiber breakage. Based on these findings, the cumulative effect of AE events (counts/hits) represents the stress risers that cause failure in the specimen. Because natural fiber composites are brittle materials, they weaken when subjected to tensile loads. For this reason, the outermost bottom layer experienced more failure than the compressive layers during the bending of the specimen. The failure modes were studied using scanning electron microscopy. It was observed from the AE activity that the stress level at the crack initiation is 10–15% higher than the stress magnitude at the fracture stage.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":511,\"journal\":{\"name\":\"Cellulose\",\"volume\":\"31 17\",\"pages\":\"10423 - 10444\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellulose\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10570-024-06189-w\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-024-06189-w","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Acoustic emission characterization of failure modes in banana/ramie/epoxy composites under flexural loading
A sufficient understanding of the failure mechanisms that govern the mechanical behavior and failure modes of natural fiber composites is essential. In this regard, acoustic emission (AE) is a potential technique to monitor the mechanical behaviour and to provide the required information about the failure mechanism of natural fiber-reinforced polymer composites. The purpose and novelty of this study is to investigate for first time, the fracture behaviour of banana/ramie/epoxy composites under a 3-point bending test. During the test procedure, the AE parameters were recorded to evaluate the crack growth from the initial crack to the final fracture of the specimen and to determine the damage locations. AE parameters, such as amplitude, frequency, cumulative hits, and AE energy distributions, were used to identify the failure mechanisms associated with matrix cracking, delamination, fiber-matrix debonding, and fiber breakage. Based on these findings, the cumulative effect of AE events (counts/hits) represents the stress risers that cause failure in the specimen. Because natural fiber composites are brittle materials, they weaken when subjected to tensile loads. For this reason, the outermost bottom layer experienced more failure than the compressive layers during the bending of the specimen. The failure modes were studied using scanning electron microscopy. It was observed from the AE activity that the stress level at the crack initiation is 10–15% higher than the stress magnitude at the fracture stage.
期刊介绍:
Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.