关于 Füredi 的猜想

IF 0.6 3区 数学 Q3 MATHEMATICS
G. Hegedüs
{"title":"关于 Füredi 的猜想","authors":"G. Hegedüs","doi":"10.1007/s10474-024-01461-8","DOIUrl":null,"url":null,"abstract":"<div><p>We confirmed the following special case of Füredi’s conjecture:\nLet <span>\\(t\\)</span> be a non-negative integer. Let <span>\\( \\mathcal{ P}=\\{(A_i,B_i)\\}_{1\\leq i\\leq m}\\)</span> be a set-pair family satisfying <span>\\(|A_i \\cap B_i|\\leq t\\)</span> for <span>\\(1\\leq i \\leq m\\)</span> and <span>\\(|A_i\\cap B_j|&gt;t\\)</span> for all <span>\\(1\\leq i\\neq j \\leq m\\)</span>. \nDefine <span>\\(a_i:=|A_i|\\)</span> and <span>\\(b_i:=|B_i|\\)</span> for each <span>\\(i\\)</span>. \nAssume that there exists a positive integer <span>\\(N\\)</span> such that <span>\\(a_i+b_i=N\\)</span> for each <span>\\(i\\)</span>. Then \n</p><div><div><span>$$\\sum_{i=1}^m \\frac{1}{{a_i+b_i-2t \\choose a_i-t}}\\leq 1.$$</span></div></div></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"174 1","pages":"244 - 246"},"PeriodicalIF":0.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10474-024-01461-8.pdf","citationCount":"0","resultStr":"{\"title\":\"On Füredi’s conjecture\",\"authors\":\"G. Hegedüs\",\"doi\":\"10.1007/s10474-024-01461-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We confirmed the following special case of Füredi’s conjecture:\\nLet <span>\\\\(t\\\\)</span> be a non-negative integer. Let <span>\\\\( \\\\mathcal{ P}=\\\\{(A_i,B_i)\\\\}_{1\\\\leq i\\\\leq m}\\\\)</span> be a set-pair family satisfying <span>\\\\(|A_i \\\\cap B_i|\\\\leq t\\\\)</span> for <span>\\\\(1\\\\leq i \\\\leq m\\\\)</span> and <span>\\\\(|A_i\\\\cap B_j|&gt;t\\\\)</span> for all <span>\\\\(1\\\\leq i\\\\neq j \\\\leq m\\\\)</span>. \\nDefine <span>\\\\(a_i:=|A_i|\\\\)</span> and <span>\\\\(b_i:=|B_i|\\\\)</span> for each <span>\\\\(i\\\\)</span>. \\nAssume that there exists a positive integer <span>\\\\(N\\\\)</span> such that <span>\\\\(a_i+b_i=N\\\\)</span> for each <span>\\\\(i\\\\)</span>. Then \\n</p><div><div><span>$$\\\\sum_{i=1}^m \\\\frac{1}{{a_i+b_i-2t \\\\choose a_i-t}}\\\\leq 1.$$</span></div></div></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"174 1\",\"pages\":\"244 - 246\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10474-024-01461-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01461-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01461-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证实了 Füredi 猜想的以下特例:让 \(t\) 是一个非负整数。让 \( \mathcal{ P}=\{(A_i,B_i)\}_{1\leq i\leq m}\) 是一个满足 \(1\leq i\leq m\) 的 \(|A_i\cap B_i|\leq t\) 和 \(|A_i\cap B_j|>t\) 的 \(1\leq i\neq j\leq m\) 的集合对族。为每个 \(i\) 定义 \(a_i:=|A_i|\) 和 \(b_i:=|B_i|\).假设存在一个正整数 \(N\),使得每个 \(i\)的 \(a_i+b_i=N/)。Then $$\sum_{i=1}^m \frac{1}{a_i+b_i-2t \choose a_i-t}}\leq 1.$$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Füredi’s conjecture

We confirmed the following special case of Füredi’s conjecture: Let \(t\) be a non-negative integer. Let \( \mathcal{ P}=\{(A_i,B_i)\}_{1\leq i\leq m}\) be a set-pair family satisfying \(|A_i \cap B_i|\leq t\) for \(1\leq i \leq m\) and \(|A_i\cap B_j|>t\) for all \(1\leq i\neq j \leq m\). Define \(a_i:=|A_i|\) and \(b_i:=|B_i|\) for each \(i\). Assume that there exists a positive integer \(N\) such that \(a_i+b_i=N\) for each \(i\). Then

$$\sum_{i=1}^m \frac{1}{{a_i+b_i-2t \choose a_i-t}}\leq 1.$$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信