{"title":"在可充电锂-空气电池的 CuFe2O4 正极催化剂中添加 RuO2 增强催化中心:CO2 对锂-空气电池性能的影响†。","authors":"Sharafudeen Pamangadan C. and Perumal Elumalai","doi":"10.1039/D4SE01202J","DOIUrl":null,"url":null,"abstract":"<p >Herein, the oxygen reduction reaction and oxygen evolution reaction (ORR/OER) kinetics of the inverse-spinel CuFe<small><sub>2</sub></small>O<small><sub>4</sub></small> catalyst was enhanced <em>via</em> the addition of a very low quantity of RuO<small><sub>2</sub></small>. It was found that minimal addition of RuO<small><sub>2</sub></small> resulted in an improvement in the limiting current density and onset potential, lower Tafel slope and good stability for the ORR/OER. Additionally, the CuFe<small><sub>2</sub></small>O<small><sub>4</sub></small> cathode catalyst with the optimal RuO<small><sub>2</sub></small> content resulted in an outstanding Li–O<small><sub>2</sub></small> battery capacity of 14 250 mA h g<small><sup>−1</sup></small>. Given that the presence of CO<small><sub>2</sub></small> poses a major challenge in achieving Li–air batteries at a practical level, the performance of the optimized catalyst under a strained Li–air condition and in pure CO<small><sub>2</sub></small> atmosphere (Li–CO<small><sub>2</sub></small> battery) was analyzed to understand its CO<small><sub>2</sub></small> tolerance and stability. It is crucial to understand the capability of the catalyst to decompose Li<small><sub>2</sub></small>CO<small><sub>3</sub></small> formed as a stable discharge product from CO<small><sub>2</sub></small>, which generally clogs the pores of the cathode catalyst. Thus, <em>in situ</em> impedance analysis and <em>ex situ</em> XRD technique were applied to decipher the fate of CO<small><sub>2</sub></small> in the reactions of Li–air/Li–CO<small><sub>2</sub></small> batteries. Moreover, stabilization to prevent the decomposition of the electrolyte was achieved in the presence of CO<small><sub>2</sub></small>.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 23","pages":" 5581-5594"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of catalytic centres by RuO2 addition to CuFe2O4 cathode catalyst for rechargeable lithium–air batteries: influence of CO2 on Li–O2 battery performances†\",\"authors\":\"Sharafudeen Pamangadan C. and Perumal Elumalai\",\"doi\":\"10.1039/D4SE01202J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Herein, the oxygen reduction reaction and oxygen evolution reaction (ORR/OER) kinetics of the inverse-spinel CuFe<small><sub>2</sub></small>O<small><sub>4</sub></small> catalyst was enhanced <em>via</em> the addition of a very low quantity of RuO<small><sub>2</sub></small>. It was found that minimal addition of RuO<small><sub>2</sub></small> resulted in an improvement in the limiting current density and onset potential, lower Tafel slope and good stability for the ORR/OER. Additionally, the CuFe<small><sub>2</sub></small>O<small><sub>4</sub></small> cathode catalyst with the optimal RuO<small><sub>2</sub></small> content resulted in an outstanding Li–O<small><sub>2</sub></small> battery capacity of 14 250 mA h g<small><sup>−1</sup></small>. Given that the presence of CO<small><sub>2</sub></small> poses a major challenge in achieving Li–air batteries at a practical level, the performance of the optimized catalyst under a strained Li–air condition and in pure CO<small><sub>2</sub></small> atmosphere (Li–CO<small><sub>2</sub></small> battery) was analyzed to understand its CO<small><sub>2</sub></small> tolerance and stability. It is crucial to understand the capability of the catalyst to decompose Li<small><sub>2</sub></small>CO<small><sub>3</sub></small> formed as a stable discharge product from CO<small><sub>2</sub></small>, which generally clogs the pores of the cathode catalyst. Thus, <em>in situ</em> impedance analysis and <em>ex situ</em> XRD technique were applied to decipher the fate of CO<small><sub>2</sub></small> in the reactions of Li–air/Li–CO<small><sub>2</sub></small> batteries. Moreover, stabilization to prevent the decomposition of the electrolyte was achieved in the presence of CO<small><sub>2</sub></small>.</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":\" 23\",\"pages\":\" 5581-5594\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se01202j\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se01202j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
本文通过添加极少量的 RuO2 增强了反向尖晶石 CuFe2O4 催化剂的氧还原反应和氧进化反应(ORR/OER)动力学。研究发现,添加极少量的 RuO2 可提高 ORR/OER 的极限电流密度和起始电位,降低 Tafel 斜率,并具有良好的稳定性。此外,具有最佳 RuO2 含量的 CuFe2O4 阴极催化剂可使锂-O2 电池容量达到 14 250 mA h g-1。鉴于二氧化碳的存在是实现锂-空气电池实用化的一大挑战,我们分析了优化催化剂在受限锂-空气条件和纯二氧化碳气氛(锂-CO2 电池)下的性能,以了解其对二氧化碳的耐受性和稳定性。CO2 通常会堵塞阴极催化剂的孔隙,因此了解催化剂分解 CO2 形成的稳定放电产物 Li2CO3 的能力至关重要。因此,我们采用了原位阻抗分析和原位 XRD 技术来解读二氧化碳在锂-空气/锂-二氧化碳电池反应中的去向。此外,在二氧化碳存在的情况下,还实现了防止电解质分解的稳定化。
Enhancement of catalytic centres by RuO2 addition to CuFe2O4 cathode catalyst for rechargeable lithium–air batteries: influence of CO2 on Li–O2 battery performances†
Herein, the oxygen reduction reaction and oxygen evolution reaction (ORR/OER) kinetics of the inverse-spinel CuFe2O4 catalyst was enhanced via the addition of a very low quantity of RuO2. It was found that minimal addition of RuO2 resulted in an improvement in the limiting current density and onset potential, lower Tafel slope and good stability for the ORR/OER. Additionally, the CuFe2O4 cathode catalyst with the optimal RuO2 content resulted in an outstanding Li–O2 battery capacity of 14 250 mA h g−1. Given that the presence of CO2 poses a major challenge in achieving Li–air batteries at a practical level, the performance of the optimized catalyst under a strained Li–air condition and in pure CO2 atmosphere (Li–CO2 battery) was analyzed to understand its CO2 tolerance and stability. It is crucial to understand the capability of the catalyst to decompose Li2CO3 formed as a stable discharge product from CO2, which generally clogs the pores of the cathode catalyst. Thus, in situ impedance analysis and ex situ XRD technique were applied to decipher the fate of CO2 in the reactions of Li–air/Li–CO2 batteries. Moreover, stabilization to prevent the decomposition of the electrolyte was achieved in the presence of CO2.
期刊介绍:
Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.