一种具有超快充电能力的无金属离子和电解质双电极光电容器†。

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Karan Surana, Sanjay N. Bariya, Darshna B. Kanani and Saurabh S. Soni
{"title":"一种具有超快充电能力的无金属离子和电解质双电极光电容器†。","authors":"Karan Surana, Sanjay N. Bariya, Darshna B. Kanani and Saurabh S. Soni","doi":"10.1039/D4SE01005A","DOIUrl":null,"url":null,"abstract":"<p >The advancement in the field of solar energy conversion devices has led to the development of both energy generation and energy storage technologies. However, a hybrid device capable of both generation and storage is still in its infancy. In this work, a multi-layered twin electrode photocapacitor has been developed which is free of metal ions and electrolyte. The device was composed of an active layer of CdSe quantum dots (QD) embedded in a polymer matrix and sandwiched between multi-layered stacking (MLS) of rGO and TiO<small><sub>2</sub></small>. An ultrafast charging time of 3–5 s was achieved under 1 sun illumination with a discharge time of over 500 s under load. An optimized capacitance of 307.4 mF g<small><sup>−1</sup></small> was obtained under load while 6022 mF g<small><sup>−1</sup></small> capacitance was obtained under load and LED illumination with ∼88% retention capacity after 200 cycles. Additionally, the device was also able to partially harness low intensity radiation (∼60 lux).</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 23","pages":" 5535-5544"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A metal ion and electrolyte free twin electrode photocapacitor possessing ultrafast charging capability†\",\"authors\":\"Karan Surana, Sanjay N. Bariya, Darshna B. Kanani and Saurabh S. Soni\",\"doi\":\"10.1039/D4SE01005A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The advancement in the field of solar energy conversion devices has led to the development of both energy generation and energy storage technologies. However, a hybrid device capable of both generation and storage is still in its infancy. In this work, a multi-layered twin electrode photocapacitor has been developed which is free of metal ions and electrolyte. The device was composed of an active layer of CdSe quantum dots (QD) embedded in a polymer matrix and sandwiched between multi-layered stacking (MLS) of rGO and TiO<small><sub>2</sub></small>. An ultrafast charging time of 3–5 s was achieved under 1 sun illumination with a discharge time of over 500 s under load. An optimized capacitance of 307.4 mF g<small><sup>−1</sup></small> was obtained under load while 6022 mF g<small><sup>−1</sup></small> capacitance was obtained under load and LED illumination with ∼88% retention capacity after 200 cycles. Additionally, the device was also able to partially harness low intensity radiation (∼60 lux).</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":\" 23\",\"pages\":\" 5535-5544\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se01005a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se01005a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

太阳能转换装置领域的进步带动了发电和储能技术的发展。然而,既能发电又能储能的混合装置仍处于起步阶段。在这项研究中,我们开发出了一种不含金属离子和电解质的多层双电极光电容器。该装置由嵌入聚合物基质中的碲化镉量子点(QD)活性层和夹在 rGO 和 TiO2 多层堆叠(MLS)之间的活性层组成。在太阳光照射下,实现了 3-5 秒的超快充电时间,负载放电时间超过 500 秒。在负载条件下,获得了 307.4 mF g-1 的优化电容;在负载和 LED 照明条件下,获得了 6022 mF g-1 的电容,200 次循环后电容保持率达 88%。此外,该器件还能部分利用低强度辐射(60 勒克斯)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A metal ion and electrolyte free twin electrode photocapacitor possessing ultrafast charging capability†

A metal ion and electrolyte free twin electrode photocapacitor possessing ultrafast charging capability†

The advancement in the field of solar energy conversion devices has led to the development of both energy generation and energy storage technologies. However, a hybrid device capable of both generation and storage is still in its infancy. In this work, a multi-layered twin electrode photocapacitor has been developed which is free of metal ions and electrolyte. The device was composed of an active layer of CdSe quantum dots (QD) embedded in a polymer matrix and sandwiched between multi-layered stacking (MLS) of rGO and TiO2. An ultrafast charging time of 3–5 s was achieved under 1 sun illumination with a discharge time of over 500 s under load. An optimized capacitance of 307.4 mF g−1 was obtained under load while 6022 mF g−1 capacitance was obtained under load and LED illumination with ∼88% retention capacity after 200 cycles. Additionally, the device was also able to partially harness low intensity radiation (∼60 lux).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信