掺杂多金属的锰基过氧化物用于甲烷的化学循环干法转化†。

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yihong Zhu, Juping Zhang, Dongfang Li, Tao Zhu and Xing Zhu
{"title":"掺杂多金属的锰基过氧化物用于甲烷的化学循环干法转化†。","authors":"Yihong Zhu, Juping Zhang, Dongfang Li, Tao Zhu and Xing Zhu","doi":"10.1039/D4SE01161A","DOIUrl":null,"url":null,"abstract":"<p >Chemical looping dry reforming of methane (CL-DRM) is an efficient pathway for the conversion of methane and CO<small><sub>2</sub></small> into synthesis gas ready for the Fischer–Tropsch process, which largely depends on the redox behavior of oxygen carriers. Perovskite-structured metal oxides are promising candidates for CL-DRM due to the structural diversity brought about by elemental doping. Herein, we proposed to fabricate a highly active oxygen carrier <em>via</em> functionally designed Mn-based perovskite oxides <em>via</em> polymetallic doping. Cu-doping in the B-site of SrMnO<small><sub>3−<em>δ</em></sub></small> reveals a significant anti-coking effect in the high-temperature continuous CH<small><sub>4</sub></small>/CO<small><sub>2</sub></small> redox process. Ni-doping in the B-site boosts the performance of methane activation resulting in high methane conversion. Moreover, Ce-doping in the A-site elevates oxygen migration and enhances partial oxidation of methane to H<small><sub>2</sub></small> and CO as well as the re-oxidation of reduced perovskite oxides. Considering the roles of Cu, Ni and Ce doping of SrMnO<small><sub>3−<em>δ</em></sub></small>, a polymetallic-doped perovskite of Sr<small><sub>0.8</sub></small>Ce<small><sub>0.2</sub></small>Mn<small><sub>0.7</sub></small>Cu<small><sub>0.1</sub></small>Ni<small><sub>0.2</sub></small>O<small><sub>3−<em>δ</em></sub></small> was synthesized and evaluated in CL-DRM. The optimized perovskite oxide demonstrated exceptional performance with a methane conversion of 85% and a CO selectivity of 93% throughout 30 redox cycles at 850 °C. In the redox reactions, the transition metals of Mn, Cu, and Ni agglomerated during the reduction but could return to a well-dispersed state after re-oxidization with CO<small><sub>2</sub></small>. The perovskite oxide exhibits self-structural-regenerability and the nano-scale agglomeration–dispersion cycle ensures the high structural stability of the material in the successive CL-DRM cycles. This study provides an important insight into the regulation of catalytic activity, oxygen mobility and carbon-resistance <em>via</em> doping of perovskite oxides with various kinds of compatible elements in both A and B sites.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 23","pages":" 5524-5534"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymetallic doping of Mn-based perovskite oxides for chemical looping dry reforming of methane†\",\"authors\":\"Yihong Zhu, Juping Zhang, Dongfang Li, Tao Zhu and Xing Zhu\",\"doi\":\"10.1039/D4SE01161A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Chemical looping dry reforming of methane (CL-DRM) is an efficient pathway for the conversion of methane and CO<small><sub>2</sub></small> into synthesis gas ready for the Fischer–Tropsch process, which largely depends on the redox behavior of oxygen carriers. Perovskite-structured metal oxides are promising candidates for CL-DRM due to the structural diversity brought about by elemental doping. Herein, we proposed to fabricate a highly active oxygen carrier <em>via</em> functionally designed Mn-based perovskite oxides <em>via</em> polymetallic doping. Cu-doping in the B-site of SrMnO<small><sub>3−<em>δ</em></sub></small> reveals a significant anti-coking effect in the high-temperature continuous CH<small><sub>4</sub></small>/CO<small><sub>2</sub></small> redox process. Ni-doping in the B-site boosts the performance of methane activation resulting in high methane conversion. Moreover, Ce-doping in the A-site elevates oxygen migration and enhances partial oxidation of methane to H<small><sub>2</sub></small> and CO as well as the re-oxidation of reduced perovskite oxides. Considering the roles of Cu, Ni and Ce doping of SrMnO<small><sub>3−<em>δ</em></sub></small>, a polymetallic-doped perovskite of Sr<small><sub>0.8</sub></small>Ce<small><sub>0.2</sub></small>Mn<small><sub>0.7</sub></small>Cu<small><sub>0.1</sub></small>Ni<small><sub>0.2</sub></small>O<small><sub>3−<em>δ</em></sub></small> was synthesized and evaluated in CL-DRM. The optimized perovskite oxide demonstrated exceptional performance with a methane conversion of 85% and a CO selectivity of 93% throughout 30 redox cycles at 850 °C. In the redox reactions, the transition metals of Mn, Cu, and Ni agglomerated during the reduction but could return to a well-dispersed state after re-oxidization with CO<small><sub>2</sub></small>. The perovskite oxide exhibits self-structural-regenerability and the nano-scale agglomeration–dispersion cycle ensures the high structural stability of the material in the successive CL-DRM cycles. This study provides an important insight into the regulation of catalytic activity, oxygen mobility and carbon-resistance <em>via</em> doping of perovskite oxides with various kinds of compatible elements in both A and B sites.</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":\" 23\",\"pages\":\" 5524-5534\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se01161a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se01161a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

甲烷化学循环干重整(CL-DRM)是将甲烷和二氧化碳转化为可用于费托合成工艺的合成气的有效途径,这在很大程度上取决于氧载体的氧化还原行为。由于元素掺杂带来的结构多样性,透辉石结构的金属氧化物很有希望成为 CL-DRM 的候选材料。在此,我们提议通过多金属掺杂,利用功能设计的锰基包晶氧化物制造高活性氧载体。在 SrMnO3-δ 的 B 位中掺入铜,可在高温连续 CH4/CO2 氧化还原过程中显示出显著的反焦化效应。在 B 位掺杂镍可提高甲烷活化性能,从而实现高甲烷转化率。此外,在 A 位掺杂的 Ce 可促进氧的迁移,并增强甲烷部分氧化为 H2 和 CO 以及过氧化物氧化物的再氧化。考虑到 SrMnO3-δ 中 Cu、Ni 和 Ce 掺杂的作用,合成了 Sr0.8Ce0.2Mn0.7Cu0.1Ni0.2O3-δ 的多金属掺杂包晶,并在 CL-DRM 中进行了评估。经过优化的过氧化物表现出卓越的性能,在 850 °C 下进行 30 次氧化还原反应,甲烷转化率达到 85%,一氧化碳选择性达到 93%。在氧化还原反应中,Mn、Cu 和 Ni 等过渡金属在还原过程中聚集,但在与 CO2 再氧化后可恢复到良好的分散状态。包晶氧化物具有自结构可再生性,纳米尺度的团聚-分散循环确保了材料在连续的 CL-DRM 循环中具有较高的结构稳定性。这项研究为通过在包晶氧化物的 A 和 B 两个位点掺杂各种兼容元素来调节催化活性、氧迁移率和抗碳性提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Polymetallic doping of Mn-based perovskite oxides for chemical looping dry reforming of methane†

Polymetallic doping of Mn-based perovskite oxides for chemical looping dry reforming of methane†

Chemical looping dry reforming of methane (CL-DRM) is an efficient pathway for the conversion of methane and CO2 into synthesis gas ready for the Fischer–Tropsch process, which largely depends on the redox behavior of oxygen carriers. Perovskite-structured metal oxides are promising candidates for CL-DRM due to the structural diversity brought about by elemental doping. Herein, we proposed to fabricate a highly active oxygen carrier via functionally designed Mn-based perovskite oxides via polymetallic doping. Cu-doping in the B-site of SrMnO3−δ reveals a significant anti-coking effect in the high-temperature continuous CH4/CO2 redox process. Ni-doping in the B-site boosts the performance of methane activation resulting in high methane conversion. Moreover, Ce-doping in the A-site elevates oxygen migration and enhances partial oxidation of methane to H2 and CO as well as the re-oxidation of reduced perovskite oxides. Considering the roles of Cu, Ni and Ce doping of SrMnO3−δ, a polymetallic-doped perovskite of Sr0.8Ce0.2Mn0.7Cu0.1Ni0.2O3−δ was synthesized and evaluated in CL-DRM. The optimized perovskite oxide demonstrated exceptional performance with a methane conversion of 85% and a CO selectivity of 93% throughout 30 redox cycles at 850 °C. In the redox reactions, the transition metals of Mn, Cu, and Ni agglomerated during the reduction but could return to a well-dispersed state after re-oxidization with CO2. The perovskite oxide exhibits self-structural-regenerability and the nano-scale agglomeration–dispersion cycle ensures the high structural stability of the material in the successive CL-DRM cycles. This study provides an important insight into the regulation of catalytic activity, oxygen mobility and carbon-resistance via doping of perovskite oxides with various kinds of compatible elements in both A and B sites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信