{"title":"有机化合物/g-C3N4 复合材料的制备及其在光催化中的应用","authors":"Jun Wu, Xingchen Ding and Xiashi Zhu","doi":"10.1039/D4QM00567H","DOIUrl":null,"url":null,"abstract":"<p >Photocatalysis based on the organic polymer semiconductor, g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>, is a green technology, but effective energy conversion is still limited by the small light absorption range and high photogenerated carrier complexation rate of g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> photocatalysts. The introduction of organic molecules into the g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> backbone has become a design hotspot for optimising g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> performance. In this review, recent developments in the morphology of g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>-based composites as photocatalysts, strategies for the preparation of organic compound/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> composites and the applications of organic compound/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> composites in photocatalysis are introduced. The perspectives on future directions of organic compound/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> composites are discussed.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 23","pages":" 3859-3876"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of organic compound/g-C3N4 composites and their applications in photocatalysis\",\"authors\":\"Jun Wu, Xingchen Ding and Xiashi Zhu\",\"doi\":\"10.1039/D4QM00567H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Photocatalysis based on the organic polymer semiconductor, g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>, is a green technology, but effective energy conversion is still limited by the small light absorption range and high photogenerated carrier complexation rate of g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> photocatalysts. The introduction of organic molecules into the g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> backbone has become a design hotspot for optimising g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> performance. In this review, recent developments in the morphology of g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>-based composites as photocatalysts, strategies for the preparation of organic compound/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> composites and the applications of organic compound/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> composites in photocatalysis are introduced. The perspectives on future directions of organic compound/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> composites are discussed.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 23\",\"pages\":\" 3859-3876\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00567h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00567h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Preparation of organic compound/g-C3N4 composites and their applications in photocatalysis
Photocatalysis based on the organic polymer semiconductor, g-C3N4, is a green technology, but effective energy conversion is still limited by the small light absorption range and high photogenerated carrier complexation rate of g-C3N4 photocatalysts. The introduction of organic molecules into the g-C3N4 backbone has become a design hotspot for optimising g-C3N4 performance. In this review, recent developments in the morphology of g-C3N4-based composites as photocatalysts, strategies for the preparation of organic compound/g-C3N4 composites and the applications of organic compound/g-C3N4 composites in photocatalysis are introduced. The perspectives on future directions of organic compound/g-C3N4 composites are discussed.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.