结构约束有助于实现更精确的能量传递:对石榴石结构 NYGlG:Tb3+,Eu3+ 荧光粉的研究†。

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiajun Feng, Jie Wang, Huazheng Chen, Ruiyan Lin, Junyuan Liang, Jingtian Xie, Lianfen Chen and Junhao Li
{"title":"结构约束有助于实现更精确的能量传递:对石榴石结构 NYGlG:Tb3+,Eu3+ 荧光粉的研究†。","authors":"Jiajun Feng, Jie Wang, Huazheng Chen, Ruiyan Lin, Junyuan Liang, Jingtian Xie, Lianfen Chen and Junhao Li","doi":"10.1039/D4QM00629A","DOIUrl":null,"url":null,"abstract":"<p >In the quest to enhance the performance of white light-emitting diodes (WLEDs), the development of efficient red phosphors is essential. To address this issue, a series of co-doped garnet-type phosphors, NaY<small><sub>2</sub></small>Ga<small><sub>2</sub></small>InGe<small><sub>2</sub></small>O<small><sub>12</sub></small>:Tb<small><sup>3+</sup></small>,Eu<small><sup>3+</sup></small> (NYGIG:Tb<small><sup>3+</sup></small>,Eu<small><sup>3+</sup></small>), were synthesized, utilizing structural confinement to achieve more precise energy transfer and improve luminescence performance. Comprehensive characterization techniques, including powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and elemental mapping, confirmed the structural and compositional features of the phosphors. Na<small><sup>+</sup></small> ions occupy one-third of the eight-coordinated sites in NYGIG, separating Tb<small><sup>3+</sup></small> and Eu<small><sup>3+</sup></small> ions, which improves the precision of energy transfer. Statistical results demonstrate that Na<small><sup>+</sup></small> increases the formation probability of Tb<small><sup>3+</sup></small>–Eu<small><sup>3+</sup></small> pairs to 7%, effectively preventing the formation of long Tb<small><sup>3+</sup></small>–Tb<small><sup>3+</sup></small> and Eu<small><sup>3+</sup></small>–Eu<small><sup>3+</sup></small> chains while the probability of forming a Tb<small><sup>3+</sup></small>–Eu<small><sup>3+</sup></small> pair is merely 3.12% in traditional garnets. When the Tb<small><sup>3+</sup></small> doping concentration is 50%, the energy transfer efficiency reaches 95% at an optimal Eu<small><sup>3+</sup></small> doping concentration of 7%. Moreover, the NYGIG:0.5Tb<small><sup>3+</sup></small>,0.07Eu<small><sup>3+</sup></small> phosphor achieves a quantum yield of 70.4% and maintains strong luminescence intensity at elevated temperatures, retaining over 85% of its room temperature luminescence intensity at 425 K. The electroluminescence (EL) spectrum of the assembled WLED, powered using a 365 nm near-UV chip, shows balanced white light output with a high color rendering index (CRI ∼ 87) and CIE coordinates of (0.402, 0.380). These findings underscore the significant potential of NYGIG:Tb<small><sup>3+</sup></small>,Eu<small><sup>3+</sup></small> phosphors for advancing highly efficient WLED technologies.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 23","pages":" 3962-3972"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural confinement helps achieve more accurate energy transfer: studies on garnet structural NYGlG:Tb3+,Eu3+ phosphors†\",\"authors\":\"Jiajun Feng, Jie Wang, Huazheng Chen, Ruiyan Lin, Junyuan Liang, Jingtian Xie, Lianfen Chen and Junhao Li\",\"doi\":\"10.1039/D4QM00629A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In the quest to enhance the performance of white light-emitting diodes (WLEDs), the development of efficient red phosphors is essential. To address this issue, a series of co-doped garnet-type phosphors, NaY<small><sub>2</sub></small>Ga<small><sub>2</sub></small>InGe<small><sub>2</sub></small>O<small><sub>12</sub></small>:Tb<small><sup>3+</sup></small>,Eu<small><sup>3+</sup></small> (NYGIG:Tb<small><sup>3+</sup></small>,Eu<small><sup>3+</sup></small>), were synthesized, utilizing structural confinement to achieve more precise energy transfer and improve luminescence performance. Comprehensive characterization techniques, including powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and elemental mapping, confirmed the structural and compositional features of the phosphors. Na<small><sup>+</sup></small> ions occupy one-third of the eight-coordinated sites in NYGIG, separating Tb<small><sup>3+</sup></small> and Eu<small><sup>3+</sup></small> ions, which improves the precision of energy transfer. Statistical results demonstrate that Na<small><sup>+</sup></small> increases the formation probability of Tb<small><sup>3+</sup></small>–Eu<small><sup>3+</sup></small> pairs to 7%, effectively preventing the formation of long Tb<small><sup>3+</sup></small>–Tb<small><sup>3+</sup></small> and Eu<small><sup>3+</sup></small>–Eu<small><sup>3+</sup></small> chains while the probability of forming a Tb<small><sup>3+</sup></small>–Eu<small><sup>3+</sup></small> pair is merely 3.12% in traditional garnets. When the Tb<small><sup>3+</sup></small> doping concentration is 50%, the energy transfer efficiency reaches 95% at an optimal Eu<small><sup>3+</sup></small> doping concentration of 7%. Moreover, the NYGIG:0.5Tb<small><sup>3+</sup></small>,0.07Eu<small><sup>3+</sup></small> phosphor achieves a quantum yield of 70.4% and maintains strong luminescence intensity at elevated temperatures, retaining over 85% of its room temperature luminescence intensity at 425 K. The electroluminescence (EL) spectrum of the assembled WLED, powered using a 365 nm near-UV chip, shows balanced white light output with a high color rendering index (CRI ∼ 87) and CIE coordinates of (0.402, 0.380). These findings underscore the significant potential of NYGIG:Tb<small><sup>3+</sup></small>,Eu<small><sup>3+</sup></small> phosphors for advancing highly efficient WLED technologies.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 23\",\"pages\":\" 3962-3972\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00629a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00629a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了提高白光发光二极管(WLED)的性能,开发高效的红色荧光粉至关重要。为了解决这个问题,我们合成了一系列共掺杂石榴石型荧光粉 NaY2Ga2InGe2O12:Tb3+,Eu3+ (NYGIG:Tb3+,Eu3+),利用结构约束实现了更精确的能量转移并提高了发光性能。粉末 X 射线衍射(XRD)、X 射线光电子能谱(XPS)、透射电子显微镜(TEM)和元素图谱等综合表征技术证实了荧光粉的结构和组成特征。Na+离子占据了NYGIG中三分之一的八配位位点,将Tb3+和Eu3+离子分开,从而提高了能量传递的精确度。统计结果表明,Na+能将Tb3+-Eu3+对的形成概率提高到7%,有效防止Tb3+-Tb3+和Eu3+-Eu3+长链的形成,而传统石榴石中形成Tb3+-Eu3+对的概率仅为3.12%。当 Tb3+ 的掺杂浓度为 50%,Eu3+ 的最佳掺杂浓度为 7% 时,能量传递效率达到 95%。此外,NYGIG:0.5Tb3+,0.07Eu3+荧光粉的量子产率达到了70.4%,并且在高温下仍能保持较强的发光强度,在425 K时仍能保持室温发光强度的85%以上。使用 365 纳米近紫外芯片供电的组装 WLED 的电致发光(EL)光谱显示出均衡的白光输出,显色指数(CRI ∼ 87)高,CIE 坐标为(0.402, 0.380)。这些发现凸显了 NYGIG:Tb3+,Eu3+ 荧光粉在推动高效 WLED 技术方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural confinement helps achieve more accurate energy transfer: studies on garnet structural NYGlG:Tb3+,Eu3+ phosphors†

Structural confinement helps achieve more accurate energy transfer: studies on garnet structural NYGlG:Tb3+,Eu3+ phosphors†

In the quest to enhance the performance of white light-emitting diodes (WLEDs), the development of efficient red phosphors is essential. To address this issue, a series of co-doped garnet-type phosphors, NaY2Ga2InGe2O12:Tb3+,Eu3+ (NYGIG:Tb3+,Eu3+), were synthesized, utilizing structural confinement to achieve more precise energy transfer and improve luminescence performance. Comprehensive characterization techniques, including powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and elemental mapping, confirmed the structural and compositional features of the phosphors. Na+ ions occupy one-third of the eight-coordinated sites in NYGIG, separating Tb3+ and Eu3+ ions, which improves the precision of energy transfer. Statistical results demonstrate that Na+ increases the formation probability of Tb3+–Eu3+ pairs to 7%, effectively preventing the formation of long Tb3+–Tb3+ and Eu3+–Eu3+ chains while the probability of forming a Tb3+–Eu3+ pair is merely 3.12% in traditional garnets. When the Tb3+ doping concentration is 50%, the energy transfer efficiency reaches 95% at an optimal Eu3+ doping concentration of 7%. Moreover, the NYGIG:0.5Tb3+,0.07Eu3+ phosphor achieves a quantum yield of 70.4% and maintains strong luminescence intensity at elevated temperatures, retaining over 85% of its room temperature luminescence intensity at 425 K. The electroluminescence (EL) spectrum of the assembled WLED, powered using a 365 nm near-UV chip, shows balanced white light output with a high color rendering index (CRI ∼ 87) and CIE coordinates of (0.402, 0.380). These findings underscore the significant potential of NYGIG:Tb3+,Eu3+ phosphors for advancing highly efficient WLED technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信