Antoine Bodin, Thomas Pietri, Caroline Celle and Jean-Pierre Simonato
{"title":"微调核壳 1D 纳米粒子,实现导热但绝缘的 3D 可打印聚合物纳米复合材料†。","authors":"Antoine Bodin, Thomas Pietri, Caroline Celle and Jean-Pierre Simonato","doi":"10.1039/D4QM00520A","DOIUrl":null,"url":null,"abstract":"<p >Core–shell nanostructures are particularly interesting for the development of dual-property nanofillers for nanocomposites. In this study, advanced materials compatible with the commonly used fused deposition modeling (FDM) 3D printing technique are reported for heat dissipation applications. Core–shell nanowires based on a highly thermally conductive silver core coated with an electrically insulating silica shell are investigated. The heat dissipation performance of polycarbonate nanocomposites is analyzed using a comprehensive set of thermal, electrical, mechanical, and rheological characterization studies to determine the optimal silica nanolayer thickness. We demonstrate that these core–shell nanofillers give access to both high thermal conductivity of up to 2.08 ± 0.05 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small>, and electrically insulating behavior (electrical resistivity >10<small><sup>12</sup></small> Ω cm) at only 3 vol% loading, while retaining very good mechanical strength. The high dispersion and interfacial cohesion of the nanomaterials with the matrix play a key role in achieving these performances. Moreover, thanks to the alignment of the 1D nanofillers during the FDM printing process, the thermal conductivity of the PC nanocomposite reaches an unprecedented value of 3.48 ± 0.06 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small> in the printing direction, <em>i.e.</em> a fifteen-fold increase over the thermal conductivity of neat PC.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 23","pages":" 3949-3961"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/qm/d4qm00520a?page=search","citationCount":"0","resultStr":"{\"title\":\"Fine-tuning of core–shell 1D nanoparticles for thermally conductive, yet electrically insulating, 3D-printable polymer nanocomposites†\",\"authors\":\"Antoine Bodin, Thomas Pietri, Caroline Celle and Jean-Pierre Simonato\",\"doi\":\"10.1039/D4QM00520A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Core–shell nanostructures are particularly interesting for the development of dual-property nanofillers for nanocomposites. In this study, advanced materials compatible with the commonly used fused deposition modeling (FDM) 3D printing technique are reported for heat dissipation applications. Core–shell nanowires based on a highly thermally conductive silver core coated with an electrically insulating silica shell are investigated. The heat dissipation performance of polycarbonate nanocomposites is analyzed using a comprehensive set of thermal, electrical, mechanical, and rheological characterization studies to determine the optimal silica nanolayer thickness. We demonstrate that these core–shell nanofillers give access to both high thermal conductivity of up to 2.08 ± 0.05 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small>, and electrically insulating behavior (electrical resistivity >10<small><sup>12</sup></small> Ω cm) at only 3 vol% loading, while retaining very good mechanical strength. The high dispersion and interfacial cohesion of the nanomaterials with the matrix play a key role in achieving these performances. Moreover, thanks to the alignment of the 1D nanofillers during the FDM printing process, the thermal conductivity of the PC nanocomposite reaches an unprecedented value of 3.48 ± 0.06 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small> in the printing direction, <em>i.e.</em> a fifteen-fold increase over the thermal conductivity of neat PC.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 23\",\"pages\":\" 3949-3961\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/qm/d4qm00520a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00520a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00520a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
核壳纳米结构对于开发用于纳米复合材料的双性能纳米填料尤为重要。本研究报告了与常用的熔融沉积建模(FDM)三维打印技术兼容的先进材料在散热方面的应用。研究了基于高导热银核和电绝缘二氧化硅外壳的核壳纳米线。通过对热学、电学、机械和流变学特性的综合研究,分析了聚碳酸酯纳米复合材料的散热性能,以确定最佳的二氧化硅纳米层厚度。我们证明,这些核壳纳米填料只需 3 Vol% 的负载量就能获得高达 2.08 ± 0.05 W m-1 K-1 的高热导率和电绝缘性能(电阻率 >1012 Ω cm),同时保持非常好的机械强度。纳米材料与基体的高分散性和界面内聚力在实现这些性能方面发挥了关键作用。此外,由于一维纳米填料在 FDM 印刷过程中的排列,PC 纳米复合材料在印刷方向上的热导率达到了前所未有的 3.48 ± 0.06 W m-1 K-1,即比纯 PC 的热导率提高了 15 倍。
Fine-tuning of core–shell 1D nanoparticles for thermally conductive, yet electrically insulating, 3D-printable polymer nanocomposites†
Core–shell nanostructures are particularly interesting for the development of dual-property nanofillers for nanocomposites. In this study, advanced materials compatible with the commonly used fused deposition modeling (FDM) 3D printing technique are reported for heat dissipation applications. Core–shell nanowires based on a highly thermally conductive silver core coated with an electrically insulating silica shell are investigated. The heat dissipation performance of polycarbonate nanocomposites is analyzed using a comprehensive set of thermal, electrical, mechanical, and rheological characterization studies to determine the optimal silica nanolayer thickness. We demonstrate that these core–shell nanofillers give access to both high thermal conductivity of up to 2.08 ± 0.05 W m−1 K−1, and electrically insulating behavior (electrical resistivity >1012 Ω cm) at only 3 vol% loading, while retaining very good mechanical strength. The high dispersion and interfacial cohesion of the nanomaterials with the matrix play a key role in achieving these performances. Moreover, thanks to the alignment of the 1D nanofillers during the FDM printing process, the thermal conductivity of the PC nanocomposite reaches an unprecedented value of 3.48 ± 0.06 W m−1 K−1 in the printing direction, i.e. a fifteen-fold increase over the thermal conductivity of neat PC.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.