Huixuan Qi, Ruobing Qu, Jiaping Shen, Hui Wen, Chunyu Yuan, Wenhai Lin, Tingting Sun and Min Li
{"title":"优化正电荷 BODIPY 纳米粒子的线粒体靶向基团以增强光动力疗法†。","authors":"Huixuan Qi, Ruobing Qu, Jiaping Shen, Hui Wen, Chunyu Yuan, Wenhai Lin, Tingting Sun and Min Li","doi":"10.1039/D4QM00725E","DOIUrl":null,"url":null,"abstract":"<p >Mitochondria play an important role in regulating programmed cell death and various available mitochondrial-targeting photosensitizers are modified by cationic groups, especially triphenylphosphine (TPP). However, it's still a big challenge to develop novel mitochondrial-targeting photosensitizers, especially those that possess better performance than traditional TPP-modified photosensitizers. In this work, three cationic boron-dipyrromethene (BODIPY) nanoparticles with different mitochondrial-targeting groups (triphenylphosphine, trimethylamine and 1-methylimidazole) were designed and synthesized for enhanced photodynamic therapy. These BODIPY nanoparticles (BDPI NPs) could be endocytosed by various cancer cells and dissociated in the lysosomes. Subsequently, they escaped from the lysosomes due to the “proton-sponge” effect and were enriched on the inner membrane of mitochondria for enhanced photodynamic therapy. BDPI NPs could generate not only singlet oxygen (<small><sup>1</sup></small>O<small><sub>2</sub></small>) but also superoxide anions (O<small><sub>2</sub></small><small><sup>−</sup></small>˙), showing great type I and II photodynamic activity. Compared with TPP and the trimethylamine substitution, the 1-methylimidazole-modified nanoparticles (BDPI-IMA NPs) exhibited the most efficient mitochondrial-targeting capability and the most excellent photodynamic activity. This work highlights the great potential of 1-methylimidazole-modified photosensitizers and nanoparticles as highly efficient mitochondrial-specific probes and phototherapy agents.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 23","pages":" 3898-3905"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing mitochondrial-targeting groups of positively-charged BODIPY nanoparticles for enhanced photodynamic therapy†\",\"authors\":\"Huixuan Qi, Ruobing Qu, Jiaping Shen, Hui Wen, Chunyu Yuan, Wenhai Lin, Tingting Sun and Min Li\",\"doi\":\"10.1039/D4QM00725E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Mitochondria play an important role in regulating programmed cell death and various available mitochondrial-targeting photosensitizers are modified by cationic groups, especially triphenylphosphine (TPP). However, it's still a big challenge to develop novel mitochondrial-targeting photosensitizers, especially those that possess better performance than traditional TPP-modified photosensitizers. In this work, three cationic boron-dipyrromethene (BODIPY) nanoparticles with different mitochondrial-targeting groups (triphenylphosphine, trimethylamine and 1-methylimidazole) were designed and synthesized for enhanced photodynamic therapy. These BODIPY nanoparticles (BDPI NPs) could be endocytosed by various cancer cells and dissociated in the lysosomes. Subsequently, they escaped from the lysosomes due to the “proton-sponge” effect and were enriched on the inner membrane of mitochondria for enhanced photodynamic therapy. BDPI NPs could generate not only singlet oxygen (<small><sup>1</sup></small>O<small><sub>2</sub></small>) but also superoxide anions (O<small><sub>2</sub></small><small><sup>−</sup></small>˙), showing great type I and II photodynamic activity. Compared with TPP and the trimethylamine substitution, the 1-methylimidazole-modified nanoparticles (BDPI-IMA NPs) exhibited the most efficient mitochondrial-targeting capability and the most excellent photodynamic activity. This work highlights the great potential of 1-methylimidazole-modified photosensitizers and nanoparticles as highly efficient mitochondrial-specific probes and phototherapy agents.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 23\",\"pages\":\" 3898-3905\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00725e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00725e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimizing mitochondrial-targeting groups of positively-charged BODIPY nanoparticles for enhanced photodynamic therapy†
Mitochondria play an important role in regulating programmed cell death and various available mitochondrial-targeting photosensitizers are modified by cationic groups, especially triphenylphosphine (TPP). However, it's still a big challenge to develop novel mitochondrial-targeting photosensitizers, especially those that possess better performance than traditional TPP-modified photosensitizers. In this work, three cationic boron-dipyrromethene (BODIPY) nanoparticles with different mitochondrial-targeting groups (triphenylphosphine, trimethylamine and 1-methylimidazole) were designed and synthesized for enhanced photodynamic therapy. These BODIPY nanoparticles (BDPI NPs) could be endocytosed by various cancer cells and dissociated in the lysosomes. Subsequently, they escaped from the lysosomes due to the “proton-sponge” effect and were enriched on the inner membrane of mitochondria for enhanced photodynamic therapy. BDPI NPs could generate not only singlet oxygen (1O2) but also superoxide anions (O2−˙), showing great type I and II photodynamic activity. Compared with TPP and the trimethylamine substitution, the 1-methylimidazole-modified nanoparticles (BDPI-IMA NPs) exhibited the most efficient mitochondrial-targeting capability and the most excellent photodynamic activity. This work highlights the great potential of 1-methylimidazole-modified photosensitizers and nanoparticles as highly efficient mitochondrial-specific probes and phototherapy agents.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.