探索用于风电场缺失数据估算的张量完成方法

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Hao Jia;Pere Marti-Puig;Cesar F Caiafa;Moises Serra-Serra;Zhe Sun;Jordi Solé-Casals
{"title":"探索用于风电场缺失数据估算的张量完成方法","authors":"Hao Jia;Pere Marti-Puig;Cesar F Caiafa;Moises Serra-Serra;Zhe Sun;Jordi Solé-Casals","doi":"10.1109/LSENS.2024.3488560","DOIUrl":null,"url":null,"abstract":"The large number of greenhouse gas emissions caused by human activities, and their harmful effect on the earth’s climate, have reached a point where actions are needed. Wind energy is one of the available green energies that can be used to mitigate this problem. Predictive maintenance is of vital importance to ensure continuous wind power generation and is typically based on the use of sensor data from all wind turbine systems. But in some cases, data contain outliers or are not available at all due to sensor or system failures. In this letter, we explore the use of tensor completion methods to estimate missing data in this field. Experimental results demonstrate the usefulness of the proposed tensor completion algorithms, especially the high-accuracy low-rank tensor completion (HaLRTC) method, which outperforms the interpolation method used as a reference.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 12","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Tensor Completion for Missing Data Estimation in Wind Farms\",\"authors\":\"Hao Jia;Pere Marti-Puig;Cesar F Caiafa;Moises Serra-Serra;Zhe Sun;Jordi Solé-Casals\",\"doi\":\"10.1109/LSENS.2024.3488560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large number of greenhouse gas emissions caused by human activities, and their harmful effect on the earth’s climate, have reached a point where actions are needed. Wind energy is one of the available green energies that can be used to mitigate this problem. Predictive maintenance is of vital importance to ensure continuous wind power generation and is typically based on the use of sensor data from all wind turbine systems. But in some cases, data contain outliers or are not available at all due to sensor or system failures. In this letter, we explore the use of tensor completion methods to estimate missing data in this field. Experimental results demonstrate the usefulness of the proposed tensor completion algorithms, especially the high-accuracy low-rank tensor completion (HaLRTC) method, which outperforms the interpolation method used as a reference.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"8 12\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10738277/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10738277/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

人类活动造成的大量温室气体排放及其对地球气候的有害影响已经到了需要采取行动的地步。风能是可用来缓解这一问题的绿色能源之一。预测性维护对于确保风力发电的连续性至关重要,通常以使用所有风力涡轮机系统的传感器数据为基础。但在某些情况下,由于传感器或系统故障,数据包含异常值或根本不可用。在这封信中,我们探讨了如何使用张量补全方法来估算该领域的缺失数据。实验结果证明了所提出的张量补全算法的实用性,尤其是高精度低秩张量补全(HaLRTC)方法,其性能优于作为参考的插值法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Tensor Completion for Missing Data Estimation in Wind Farms
The large number of greenhouse gas emissions caused by human activities, and their harmful effect on the earth’s climate, have reached a point where actions are needed. Wind energy is one of the available green energies that can be used to mitigate this problem. Predictive maintenance is of vital importance to ensure continuous wind power generation and is typically based on the use of sensor data from all wind turbine systems. But in some cases, data contain outliers or are not available at all due to sensor or system failures. In this letter, we explore the use of tensor completion methods to estimate missing data in this field. Experimental results demonstrate the usefulness of the proposed tensor completion algorithms, especially the high-accuracy low-rank tensor completion (HaLRTC) method, which outperforms the interpolation method used as a reference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信