{"title":"多集群 WPCN 中的合作吞吐量最大化","authors":"Omid Rezaei;Maryam Masjedi;Mohammad Mahdi Naghsh;Saeed Gazor;Mohammad Mahdi Nayebi","doi":"10.1109/TGCN.2024.3407522","DOIUrl":null,"url":null,"abstract":"This paper investigates a multi-cluster Wireless Powered Communication Network (WPCN) where user clusters cooperate with a Cluster Head (CH) and a Hybrid Access Point (HAP). Employing beamforming, the HAP supplies energy in the downlink phase, while users transmit signals to the HAP and CHs in the uplink phase. We optimize the Energy Beamforming (EB) matrix, user transmit covariance matrices, and time slot allocation to enhance both max-min and sum network throughput. To tackle the non-convexity of the optimization problems, we decompose them into two subproblems and reformulate each as convex Second Order Cone Programming (SOCP) and Quadratic Constraint Quadratic Programming (QCQP) for the max-min and sum throughput problems, respectively. Notably, we account for imperfections in Channel State Information (CSI) and non-linear Energy Harvesting (EH) circuits. Additionally, we incorporate the active Intelligent Reflecting Surfaces (IRS) as a key component in our proposed method. Numerical examples illustrate the significant impact of these contributions across various scenarios.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"8 4","pages":"1505-1520"},"PeriodicalIF":5.3000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cooperative Throughput Maximization in a Multi-Cluster WPCN\",\"authors\":\"Omid Rezaei;Maryam Masjedi;Mohammad Mahdi Naghsh;Saeed Gazor;Mohammad Mahdi Nayebi\",\"doi\":\"10.1109/TGCN.2024.3407522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates a multi-cluster Wireless Powered Communication Network (WPCN) where user clusters cooperate with a Cluster Head (CH) and a Hybrid Access Point (HAP). Employing beamforming, the HAP supplies energy in the downlink phase, while users transmit signals to the HAP and CHs in the uplink phase. We optimize the Energy Beamforming (EB) matrix, user transmit covariance matrices, and time slot allocation to enhance both max-min and sum network throughput. To tackle the non-convexity of the optimization problems, we decompose them into two subproblems and reformulate each as convex Second Order Cone Programming (SOCP) and Quadratic Constraint Quadratic Programming (QCQP) for the max-min and sum throughput problems, respectively. Notably, we account for imperfections in Channel State Information (CSI) and non-linear Energy Harvesting (EH) circuits. Additionally, we incorporate the active Intelligent Reflecting Surfaces (IRS) as a key component in our proposed method. Numerical examples illustrate the significant impact of these contributions across various scenarios.\",\"PeriodicalId\":13052,\"journal\":{\"name\":\"IEEE Transactions on Green Communications and Networking\",\"volume\":\"8 4\",\"pages\":\"1505-1520\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Green Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10542457/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Green Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10542457/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Cooperative Throughput Maximization in a Multi-Cluster WPCN
This paper investigates a multi-cluster Wireless Powered Communication Network (WPCN) where user clusters cooperate with a Cluster Head (CH) and a Hybrid Access Point (HAP). Employing beamforming, the HAP supplies energy in the downlink phase, while users transmit signals to the HAP and CHs in the uplink phase. We optimize the Energy Beamforming (EB) matrix, user transmit covariance matrices, and time slot allocation to enhance both max-min and sum network throughput. To tackle the non-convexity of the optimization problems, we decompose them into two subproblems and reformulate each as convex Second Order Cone Programming (SOCP) and Quadratic Constraint Quadratic Programming (QCQP) for the max-min and sum throughput problems, respectively. Notably, we account for imperfections in Channel State Information (CSI) and non-linear Energy Harvesting (EH) circuits. Additionally, we incorporate the active Intelligent Reflecting Surfaces (IRS) as a key component in our proposed method. Numerical examples illustrate the significant impact of these contributions across various scenarios.