Anton V. Rozhkov*, Sergi Burguera, Antonio Frontera and Vadim Yu. Kukushkin*,
{"title":"阿伦碲(II)非共价结合中烯丙基π-孔和σ-(Te)-孔之间的形式金属依赖性(M = Pt、Pd)转换","authors":"Anton V. Rozhkov*, Sergi Burguera, Antonio Frontera and Vadim Yu. Kukushkin*, ","doi":"10.1021/acs.cgd.4c0110410.1021/acs.cgd.4c01104","DOIUrl":null,"url":null,"abstract":"<p >The diketonate complexes M(acac)<sub>2</sub> (M = Pd (<b>1</b>), Pt (<b>2</b>)) were cocrystallized with bis(perfluoropyridin-4-yl)tellane (Py<sup>F</sup><sub>2</sub>Te). Single-crystal X-ray studies of the resulting adducts revealed that the binding mode and stoichiometry between the coformers dramatically depend on the identity of metal sites. Pd(acac)<sub>2</sub> formed adduct <b>1</b><sub>3</sub>·(Py<sup>F</sup><sub>2</sub>Te)<sub>2</sub> where Te···C<sub>acac</sub> and π<sub>hole</sub>···Pd noncovalent interactions were detected. In contrast to <b>1</b>, Pt(acac)<sub>2</sub> formed adduct <b>2</b>·Py<sup>F</sup><sub>2</sub>Te where the Te···Pt metal-involving chalcogen bond was observed. Various DFT methods, including the calculation of fully optimized dimeric assemblies and their mutated dimers, allowed for a detailed examination of the corresponding metal-involving noncovalent interactions. Our findings support the notion that metal-involving interactions are the primary structure-determining factors, and the formal transition to the Te···Pt chalcogen bond can be attributed to the increased <i>d</i><sub><i>z</i></sub><sup>2</sup>-nucleophilicity of the platinum atom compared to the palladium site.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"24 22","pages":"9581–9589 9581–9589"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formal Metal-Dependent (M = Pt, Pd) Switching between Arene π-Hole and σ-(Te)-Hole in the Arenetellurium(II) Noncovalent Binding\",\"authors\":\"Anton V. Rozhkov*, Sergi Burguera, Antonio Frontera and Vadim Yu. Kukushkin*, \",\"doi\":\"10.1021/acs.cgd.4c0110410.1021/acs.cgd.4c01104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The diketonate complexes M(acac)<sub>2</sub> (M = Pd (<b>1</b>), Pt (<b>2</b>)) were cocrystallized with bis(perfluoropyridin-4-yl)tellane (Py<sup>F</sup><sub>2</sub>Te). Single-crystal X-ray studies of the resulting adducts revealed that the binding mode and stoichiometry between the coformers dramatically depend on the identity of metal sites. Pd(acac)<sub>2</sub> formed adduct <b>1</b><sub>3</sub>·(Py<sup>F</sup><sub>2</sub>Te)<sub>2</sub> where Te···C<sub>acac</sub> and π<sub>hole</sub>···Pd noncovalent interactions were detected. In contrast to <b>1</b>, Pt(acac)<sub>2</sub> formed adduct <b>2</b>·Py<sup>F</sup><sub>2</sub>Te where the Te···Pt metal-involving chalcogen bond was observed. Various DFT methods, including the calculation of fully optimized dimeric assemblies and their mutated dimers, allowed for a detailed examination of the corresponding metal-involving noncovalent interactions. Our findings support the notion that metal-involving interactions are the primary structure-determining factors, and the formal transition to the Te···Pt chalcogen bond can be attributed to the increased <i>d</i><sub><i>z</i></sub><sup>2</sup>-nucleophilicity of the platinum atom compared to the palladium site.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":\"24 22\",\"pages\":\"9581–9589 9581–9589\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.4c01104\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c01104","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Formal Metal-Dependent (M = Pt, Pd) Switching between Arene π-Hole and σ-(Te)-Hole in the Arenetellurium(II) Noncovalent Binding
The diketonate complexes M(acac)2 (M = Pd (1), Pt (2)) were cocrystallized with bis(perfluoropyridin-4-yl)tellane (PyF2Te). Single-crystal X-ray studies of the resulting adducts revealed that the binding mode and stoichiometry between the coformers dramatically depend on the identity of metal sites. Pd(acac)2 formed adduct 13·(PyF2Te)2 where Te···Cacac and πhole···Pd noncovalent interactions were detected. In contrast to 1, Pt(acac)2 formed adduct 2·PyF2Te where the Te···Pt metal-involving chalcogen bond was observed. Various DFT methods, including the calculation of fully optimized dimeric assemblies and their mutated dimers, allowed for a detailed examination of the corresponding metal-involving noncovalent interactions. Our findings support the notion that metal-involving interactions are the primary structure-determining factors, and the formal transition to the Te···Pt chalcogen bond can be attributed to the increased dz2-nucleophilicity of the platinum atom compared to the palladium site.
期刊介绍:
The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials.
Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.