交叉运行混合特征改进了与数据无关的采集蛋白质组学的鉴定工作

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yachen Liu, Longfei Mei, Chenyu Liang, Chuan-Qi Zhong, Mengsha Tong* and Rongshan Yu*, 
{"title":"交叉运行混合特征改进了与数据无关的采集蛋白质组学的鉴定工作","authors":"Yachen Liu,&nbsp;Longfei Mei,&nbsp;Chenyu Liang,&nbsp;Chuan-Qi Zhong,&nbsp;Mengsha Tong* and Rongshan Yu*,&nbsp;","doi":"10.1021/acsomega.4c0739810.1021/acsomega.4c07398","DOIUrl":null,"url":null,"abstract":"<p >The analysis of data-independent acquisition (DIA) mass spectrometry data is crucial for comprehensive proteomics studies. However, traditional single-run methods often fall short in terms of identification depth and consistency. We present HFDiscrim, a specialized multirun DIA analysis tool aimed at enhancing the depth and consistency of reliable peptide identifications of DIA analysis tools. HFDiscrim was extensively benchmarked on multiple data sets, including the MCB data set, the ccRCC data set, and a three-species benchmark mixture. Compared to PyProphet, HFDiscrim identified 22.04% more precursors, 19.1% more peptides, and 13.2% more proteins while maintaining a controllable false discovery rate. Furthermore, HFDiscrim demonstrated higher identification rates and improved reproducibility across multiple runs. HFDiscrim is publicly available at https://github.com/yachliu/HFDiscrim.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 46","pages":"46362–46372 46362–46372"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c07398","citationCount":"0","resultStr":"{\"title\":\"Cross-Run Hybrid Features Improve the Identification of Data-Independent Acquisition Proteomics\",\"authors\":\"Yachen Liu,&nbsp;Longfei Mei,&nbsp;Chenyu Liang,&nbsp;Chuan-Qi Zhong,&nbsp;Mengsha Tong* and Rongshan Yu*,&nbsp;\",\"doi\":\"10.1021/acsomega.4c0739810.1021/acsomega.4c07398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The analysis of data-independent acquisition (DIA) mass spectrometry data is crucial for comprehensive proteomics studies. However, traditional single-run methods often fall short in terms of identification depth and consistency. We present HFDiscrim, a specialized multirun DIA analysis tool aimed at enhancing the depth and consistency of reliable peptide identifications of DIA analysis tools. HFDiscrim was extensively benchmarked on multiple data sets, including the MCB data set, the ccRCC data set, and a three-species benchmark mixture. Compared to PyProphet, HFDiscrim identified 22.04% more precursors, 19.1% more peptides, and 13.2% more proteins while maintaining a controllable false discovery rate. Furthermore, HFDiscrim demonstrated higher identification rates and improved reproducibility across multiple runs. HFDiscrim is publicly available at https://github.com/yachliu/HFDiscrim.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"9 46\",\"pages\":\"46362–46372 46362–46372\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c07398\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c07398\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c07398","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

数据独立采集(DIA)质谱数据分析对于全面的蛋白质组学研究至关重要。然而,传统的单次运行方法往往在鉴定深度和一致性方面存在不足。我们介绍的 HFDiscrim 是一种专门的多运行 DIA 分析工具,旨在提高 DIA 分析工具可靠肽段鉴定的深度和一致性。我们在多个数据集(包括 MCB 数据集、ccRCC 数据集和三物种基准混合物)上对 HFDiscrim 进行了广泛的基准测试。与 PyProphet 相比,HFDiscrim 多鉴定出 22.04% 的前体、19.1% 的肽和 13.2% 的蛋白质,同时保持了可控的错误发现率。此外,HFDiscrim 在多次运行中表现出更高的鉴定率和更好的可重复性。HFDiscrim 可在 https://github.com/yachliu/HFDiscrim 公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-Run Hybrid Features Improve the Identification of Data-Independent Acquisition Proteomics

The analysis of data-independent acquisition (DIA) mass spectrometry data is crucial for comprehensive proteomics studies. However, traditional single-run methods often fall short in terms of identification depth and consistency. We present HFDiscrim, a specialized multirun DIA analysis tool aimed at enhancing the depth and consistency of reliable peptide identifications of DIA analysis tools. HFDiscrim was extensively benchmarked on multiple data sets, including the MCB data set, the ccRCC data set, and a three-species benchmark mixture. Compared to PyProphet, HFDiscrim identified 22.04% more precursors, 19.1% more peptides, and 13.2% more proteins while maintaining a controllable false discovery rate. Furthermore, HFDiscrim demonstrated higher identification rates and improved reproducibility across multiple runs. HFDiscrim is publicly available at https://github.com/yachliu/HFDiscrim.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信