Mingdong Zhang, Qisheng Hong, Yuan Aocheng, Yan Zhang, Xiaoying Huang, Meiling Feng, Jingli Mu
{"title":"三明治状层状金属硫化物离子交换剂对复杂环境中 Ni2+ 的高选择性捕获","authors":"Mingdong Zhang, Qisheng Hong, Yuan Aocheng, Yan Zhang, Xiaoying Huang, Meiling Feng, Jingli Mu","doi":"10.1016/j.jhazmat.2024.136562","DOIUrl":null,"url":null,"abstract":"Radionickel ion (<sup>63</sup>Ni<sup>2+</sup>) remediation is critical for public health and the environment, but selectively capturing of Ni<sup>2+</sup> from complex environments like seawater presents a challenge. Metal sulfide ion exchangers (MSIEs) are emerging as efficient adsorbents for radionuclides; however, the study of MSIEs for selectively removing Ni<sup>2+</sup> is still in its infancy. Herein, the layered metal sulfide K<sub>2</sub>Cu<sub>2</sub>Sn<sub>2</sub>S<sub>6</sub> (CTS-1) with a unique sandwich-like anionic framework was synthesized by the hydrothermal method for the first time, representing a novel approach in the selective capture of Ni<sup>2+</sup> from complex environments. Single-crystal structural analysis confirmed the sandwich-like framework, in which a [Cu-S] sublayer is sandwiched by two [Sn-S] sublayers with parallel grooves. The charge-balancing K<sup>+</sup> ions are located within these grooves. Due to its special structure, CTS-1 exhibits remarkable adsorption capacities for Ni<sup>2+</sup> with rapid kinetics (a high rate constant <em>k</em><sub>2</sub> of 7.26×10<sup>−2</sup> g/(mg·min)), broad pH durability (removal rates >97% at pH 3–12), and high selectivity (separation factors for Ni<sup>2+</sup> >700 against various cations). Impressively, it can efficiently remove Ni<sup>2+</sup> from multiple complex environments, achieving a 90.28% removal rate even in seawater (<em>C</em><sub>0</sub><sup>Ni</sup> ~5<!-- --> <!-- -->mg/L). CTS-1 is environmentally friendly and suitable for use in fixed-bed columns for the practical application. Moreover, Ni<sup>2+</sup> ions are captured through ion exchange with K<sup>+</sup>, and the high selectivity stems from the strong affinity of S<sup>2−</sup> for Ni<sup>2+</sup> and the trapping effect of the grooves within the structure. In summary, this pioneering study demonstrates the highly selective capture of Ni<sup>2+</sup> by a sandwich-like layered MSIE, potentially inspiring the development of efficient scavengers for radionuclides.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"64 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly selective capture of Ni2+ from complex environments by a sandwich-like layered metal sulfide ion exchanger\",\"authors\":\"Mingdong Zhang, Qisheng Hong, Yuan Aocheng, Yan Zhang, Xiaoying Huang, Meiling Feng, Jingli Mu\",\"doi\":\"10.1016/j.jhazmat.2024.136562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radionickel ion (<sup>63</sup>Ni<sup>2+</sup>) remediation is critical for public health and the environment, but selectively capturing of Ni<sup>2+</sup> from complex environments like seawater presents a challenge. Metal sulfide ion exchangers (MSIEs) are emerging as efficient adsorbents for radionuclides; however, the study of MSIEs for selectively removing Ni<sup>2+</sup> is still in its infancy. Herein, the layered metal sulfide K<sub>2</sub>Cu<sub>2</sub>Sn<sub>2</sub>S<sub>6</sub> (CTS-1) with a unique sandwich-like anionic framework was synthesized by the hydrothermal method for the first time, representing a novel approach in the selective capture of Ni<sup>2+</sup> from complex environments. Single-crystal structural analysis confirmed the sandwich-like framework, in which a [Cu-S] sublayer is sandwiched by two [Sn-S] sublayers with parallel grooves. The charge-balancing K<sup>+</sup> ions are located within these grooves. Due to its special structure, CTS-1 exhibits remarkable adsorption capacities for Ni<sup>2+</sup> with rapid kinetics (a high rate constant <em>k</em><sub>2</sub> of 7.26×10<sup>−2</sup> g/(mg·min)), broad pH durability (removal rates >97% at pH 3–12), and high selectivity (separation factors for Ni<sup>2+</sup> >700 against various cations). Impressively, it can efficiently remove Ni<sup>2+</sup> from multiple complex environments, achieving a 90.28% removal rate even in seawater (<em>C</em><sub>0</sub><sup>Ni</sup> ~5<!-- --> <!-- -->mg/L). CTS-1 is environmentally friendly and suitable for use in fixed-bed columns for the practical application. Moreover, Ni<sup>2+</sup> ions are captured through ion exchange with K<sup>+</sup>, and the high selectivity stems from the strong affinity of S<sup>2−</sup> for Ni<sup>2+</sup> and the trapping effect of the grooves within the structure. In summary, this pioneering study demonstrates the highly selective capture of Ni<sup>2+</sup> by a sandwich-like layered MSIE, potentially inspiring the development of efficient scavengers for radionuclides.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.136562\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136562","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Highly selective capture of Ni2+ from complex environments by a sandwich-like layered metal sulfide ion exchanger
Radionickel ion (63Ni2+) remediation is critical for public health and the environment, but selectively capturing of Ni2+ from complex environments like seawater presents a challenge. Metal sulfide ion exchangers (MSIEs) are emerging as efficient adsorbents for radionuclides; however, the study of MSIEs for selectively removing Ni2+ is still in its infancy. Herein, the layered metal sulfide K2Cu2Sn2S6 (CTS-1) with a unique sandwich-like anionic framework was synthesized by the hydrothermal method for the first time, representing a novel approach in the selective capture of Ni2+ from complex environments. Single-crystal structural analysis confirmed the sandwich-like framework, in which a [Cu-S] sublayer is sandwiched by two [Sn-S] sublayers with parallel grooves. The charge-balancing K+ ions are located within these grooves. Due to its special structure, CTS-1 exhibits remarkable adsorption capacities for Ni2+ with rapid kinetics (a high rate constant k2 of 7.26×10−2 g/(mg·min)), broad pH durability (removal rates >97% at pH 3–12), and high selectivity (separation factors for Ni2+ >700 against various cations). Impressively, it can efficiently remove Ni2+ from multiple complex environments, achieving a 90.28% removal rate even in seawater (C0Ni ~5 mg/L). CTS-1 is environmentally friendly and suitable for use in fixed-bed columns for the practical application. Moreover, Ni2+ ions are captured through ion exchange with K+, and the high selectivity stems from the strong affinity of S2− for Ni2+ and the trapping effect of the grooves within the structure. In summary, this pioneering study demonstrates the highly selective capture of Ni2+ by a sandwich-like layered MSIE, potentially inspiring the development of efficient scavengers for radionuclides.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.