{"title":"含无机盐和有机盐的聚合物电解质用于钠离子超级电容器","authors":"Varun Kumar Singh, Amita Chandra","doi":"10.1016/j.electacta.2024.145377","DOIUrl":null,"url":null,"abstract":"The optimized high ion conducting polymer electrolyte film containing copolymer PVdF-HFP, 10 wt.% inorganic salt {sodium bis(trifluoromethane sulfonyl)imide (NaTFSI)} and 70 wt.% organic salt {1-butyl-1-methypyrrolidinium bis(trifluoromethane sulfonyl) imide ([BMPYr] [TFSI])} have been used for the fabrication of Na-ion supercapacitor. The optimized composition of the electrolyte film possesses maximum room temperature (RT) ionic conductivity (∼0.87 mS/cm), excellent mechanical stability and large operating potential window (∼5.5 V). Using this film and activated carbon electrode (ACE (AC∼0.8 mg/cm<sup>2</sup>)), electrochemical double layer capacitor (EDLC)/Na-ion supercapacitor has been fabricated. The bulk resistance of this cell is found to be 22.9 Ω which is an evidence of good electrode-electrolyte contact. The cyclic voltammetric (CV) results of the EDLC-cell displays almost rectangular shape which demonstrates their capacitive behavior. The fabricated Na-ion supercapacitor has delivered specific capacities of ∼173 F/g, 151.91 F/g, 145.32 F/g and 122.33 F/g at different areal current densities (∼0.5, 0.8, 1.0 and 2.0 mA/cm<sup>2</sup>, respectively) along with the coulombic efficiency ranging from 97.6% to 99.9% upto 4500 cycles at 1 mA/cm<sup>2</sup>. The obtained value of the specific capacitance(s) of the EDLC cell from cyclic voltammetry is in good agreement with the value obtained from galvanostatic charge-discharge (GCD) measurements. Also, a nearly stable cycling performance has been obtained at 1 mA/cm<sup>2</sup> upto 2500 cycles and after that the value of the specific capacitance (<em>C<sub>SP/CD</sub></em>) decreases slightly upto 4500 cycles. This decrease in <em>C<sub>SP/CD</sub></em> value may be because of increased thickness of solid electrolyte interface (SEI) layer and its corresponding interfacial resistance. The maximum specific energy and power density at 0.5 mA/ cm<sup>2</sup> areal current density for first cycle are 31.52 Wh/Kg and ∼472.8 kW/Kg, respectively. On using ACE having AC∼1.6 mg/cm<sup>2</sup>, the fabricated Na-ion EDLC-cell has given maximum value of specific capacitance as ∼72.6 F/g at 0.5 mA/cm<sup>2</sup> alongwith coulombic efficiency in the range of 96.5 % to 99.5 %. For the first cycle, the energy as well power density increase (∼40.31 Wh/Kg and ∼499.12 kW/Kg, respectively) and show stable cyclability upto 3000 cycles.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"112 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymer Electrolyte with inorganic and organic salts for Na-Ion Supercapacitor\",\"authors\":\"Varun Kumar Singh, Amita Chandra\",\"doi\":\"10.1016/j.electacta.2024.145377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimized high ion conducting polymer electrolyte film containing copolymer PVdF-HFP, 10 wt.% inorganic salt {sodium bis(trifluoromethane sulfonyl)imide (NaTFSI)} and 70 wt.% organic salt {1-butyl-1-methypyrrolidinium bis(trifluoromethane sulfonyl) imide ([BMPYr] [TFSI])} have been used for the fabrication of Na-ion supercapacitor. The optimized composition of the electrolyte film possesses maximum room temperature (RT) ionic conductivity (∼0.87 mS/cm), excellent mechanical stability and large operating potential window (∼5.5 V). Using this film and activated carbon electrode (ACE (AC∼0.8 mg/cm<sup>2</sup>)), electrochemical double layer capacitor (EDLC)/Na-ion supercapacitor has been fabricated. The bulk resistance of this cell is found to be 22.9 Ω which is an evidence of good electrode-electrolyte contact. The cyclic voltammetric (CV) results of the EDLC-cell displays almost rectangular shape which demonstrates their capacitive behavior. The fabricated Na-ion supercapacitor has delivered specific capacities of ∼173 F/g, 151.91 F/g, 145.32 F/g and 122.33 F/g at different areal current densities (∼0.5, 0.8, 1.0 and 2.0 mA/cm<sup>2</sup>, respectively) along with the coulombic efficiency ranging from 97.6% to 99.9% upto 4500 cycles at 1 mA/cm<sup>2</sup>. The obtained value of the specific capacitance(s) of the EDLC cell from cyclic voltammetry is in good agreement with the value obtained from galvanostatic charge-discharge (GCD) measurements. Also, a nearly stable cycling performance has been obtained at 1 mA/cm<sup>2</sup> upto 2500 cycles and after that the value of the specific capacitance (<em>C<sub>SP/CD</sub></em>) decreases slightly upto 4500 cycles. This decrease in <em>C<sub>SP/CD</sub></em> value may be because of increased thickness of solid electrolyte interface (SEI) layer and its corresponding interfacial resistance. The maximum specific energy and power density at 0.5 mA/ cm<sup>2</sup> areal current density for first cycle are 31.52 Wh/Kg and ∼472.8 kW/Kg, respectively. On using ACE having AC∼1.6 mg/cm<sup>2</sup>, the fabricated Na-ion EDLC-cell has given maximum value of specific capacitance as ∼72.6 F/g at 0.5 mA/cm<sup>2</sup> alongwith coulombic efficiency in the range of 96.5 % to 99.5 %. For the first cycle, the energy as well power density increase (∼40.31 Wh/Kg and ∼499.12 kW/Kg, respectively) and show stable cyclability upto 3000 cycles.\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.electacta.2024.145377\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2024.145377","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Polymer Electrolyte with inorganic and organic salts for Na-Ion Supercapacitor
The optimized high ion conducting polymer electrolyte film containing copolymer PVdF-HFP, 10 wt.% inorganic salt {sodium bis(trifluoromethane sulfonyl)imide (NaTFSI)} and 70 wt.% organic salt {1-butyl-1-methypyrrolidinium bis(trifluoromethane sulfonyl) imide ([BMPYr] [TFSI])} have been used for the fabrication of Na-ion supercapacitor. The optimized composition of the electrolyte film possesses maximum room temperature (RT) ionic conductivity (∼0.87 mS/cm), excellent mechanical stability and large operating potential window (∼5.5 V). Using this film and activated carbon electrode (ACE (AC∼0.8 mg/cm2)), electrochemical double layer capacitor (EDLC)/Na-ion supercapacitor has been fabricated. The bulk resistance of this cell is found to be 22.9 Ω which is an evidence of good electrode-electrolyte contact. The cyclic voltammetric (CV) results of the EDLC-cell displays almost rectangular shape which demonstrates their capacitive behavior. The fabricated Na-ion supercapacitor has delivered specific capacities of ∼173 F/g, 151.91 F/g, 145.32 F/g and 122.33 F/g at different areal current densities (∼0.5, 0.8, 1.0 and 2.0 mA/cm2, respectively) along with the coulombic efficiency ranging from 97.6% to 99.9% upto 4500 cycles at 1 mA/cm2. The obtained value of the specific capacitance(s) of the EDLC cell from cyclic voltammetry is in good agreement with the value obtained from galvanostatic charge-discharge (GCD) measurements. Also, a nearly stable cycling performance has been obtained at 1 mA/cm2 upto 2500 cycles and after that the value of the specific capacitance (CSP/CD) decreases slightly upto 4500 cycles. This decrease in CSP/CD value may be because of increased thickness of solid electrolyte interface (SEI) layer and its corresponding interfacial resistance. The maximum specific energy and power density at 0.5 mA/ cm2 areal current density for first cycle are 31.52 Wh/Kg and ∼472.8 kW/Kg, respectively. On using ACE having AC∼1.6 mg/cm2, the fabricated Na-ion EDLC-cell has given maximum value of specific capacitance as ∼72.6 F/g at 0.5 mA/cm2 alongwith coulombic efficiency in the range of 96.5 % to 99.5 %. For the first cycle, the energy as well power density increase (∼40.31 Wh/Kg and ∼499.12 kW/Kg, respectively) and show stable cyclability upto 3000 cycles.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.