{"title":"对发光蓝变星和B[e]超巨星的运动学洞察","authors":"Julian A. Deman and M. S. Oey","doi":"10.3847/1538-4357/ad8134","DOIUrl":null,"url":null,"abstract":"Recent work suggests that many luminous blue variables (LBVs) and B[e] supergiants (sgB[e]) are isolated, implying that they may be products of massive binaries, kicked by partner supernovae. However, the evidence is somewhat complex and controversial. To test this scenario, we measure the proper-motion velocities for these objects in the LMC and SMC, using Gaia Data Release 3. Our LMC results show that the kinematics, luminosities, and IR properties point to LBVs and sgB[e] stars being distinct classes. We find that Class 1 LBVs, which have dusty nebulae, and sgB[e] stars both show velocity distributions comparable to that of SMC field OBe stars, which are known to have experienced SN kicks. The sgB[e] stars are faster, plausibly due to their lower average masses. However, Class 2 LBVs, which are luminous objects without dusty nebulae, show no signs of acceleration, therefore suggesting that they are single stars, pre-SN binaries, or perhaps binary mergers. The candidate LBV Class 3 stars, which are dominated by hot dust, are all confirmed sgB[e] stars; their luminosities and velocities show that they simply represent the most luminous and massive of the sgB[e] class. There are very few SMC objects, but the sgB[e] stars are faster than their LMC counterparts, which may be consistent with expectations that lower-metallicity binaries are tighter, causing faster ejections. We also examine the distinct class of dust-free, weak-lined sgB[e] stars, finding that the SMC objects have the fastest velocities of the entire sample.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinematic Insights into Luminous Blue Variables and B[e] Supergiants\",\"authors\":\"Julian A. Deman and M. S. Oey\",\"doi\":\"10.3847/1538-4357/ad8134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent work suggests that many luminous blue variables (LBVs) and B[e] supergiants (sgB[e]) are isolated, implying that they may be products of massive binaries, kicked by partner supernovae. However, the evidence is somewhat complex and controversial. To test this scenario, we measure the proper-motion velocities for these objects in the LMC and SMC, using Gaia Data Release 3. Our LMC results show that the kinematics, luminosities, and IR properties point to LBVs and sgB[e] stars being distinct classes. We find that Class 1 LBVs, which have dusty nebulae, and sgB[e] stars both show velocity distributions comparable to that of SMC field OBe stars, which are known to have experienced SN kicks. The sgB[e] stars are faster, plausibly due to their lower average masses. However, Class 2 LBVs, which are luminous objects without dusty nebulae, show no signs of acceleration, therefore suggesting that they are single stars, pre-SN binaries, or perhaps binary mergers. The candidate LBV Class 3 stars, which are dominated by hot dust, are all confirmed sgB[e] stars; their luminosities and velocities show that they simply represent the most luminous and massive of the sgB[e] class. There are very few SMC objects, but the sgB[e] stars are faster than their LMC counterparts, which may be consistent with expectations that lower-metallicity binaries are tighter, causing faster ejections. We also examine the distinct class of dust-free, weak-lined sgB[e] stars, finding that the SMC objects have the fastest velocities of the entire sample.\",\"PeriodicalId\":501813,\"journal\":{\"name\":\"The Astrophysical Journal\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/ad8134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad8134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kinematic Insights into Luminous Blue Variables and B[e] Supergiants
Recent work suggests that many luminous blue variables (LBVs) and B[e] supergiants (sgB[e]) are isolated, implying that they may be products of massive binaries, kicked by partner supernovae. However, the evidence is somewhat complex and controversial. To test this scenario, we measure the proper-motion velocities for these objects in the LMC and SMC, using Gaia Data Release 3. Our LMC results show that the kinematics, luminosities, and IR properties point to LBVs and sgB[e] stars being distinct classes. We find that Class 1 LBVs, which have dusty nebulae, and sgB[e] stars both show velocity distributions comparable to that of SMC field OBe stars, which are known to have experienced SN kicks. The sgB[e] stars are faster, plausibly due to their lower average masses. However, Class 2 LBVs, which are luminous objects without dusty nebulae, show no signs of acceleration, therefore suggesting that they are single stars, pre-SN binaries, or perhaps binary mergers. The candidate LBV Class 3 stars, which are dominated by hot dust, are all confirmed sgB[e] stars; their luminosities and velocities show that they simply represent the most luminous and massive of the sgB[e] class. There are very few SMC objects, but the sgB[e] stars are faster than their LMC counterparts, which may be consistent with expectations that lower-metallicity binaries are tighter, causing faster ejections. We also examine the distinct class of dust-free, weak-lined sgB[e] stars, finding that the SMC objects have the fastest velocities of the entire sample.