Chen Liu, Yongchang Zhu, Ye Ma, Zhiyang Gao, Dan Ye, Qirong Li
{"title":"通过循环热压研究带有锌夹层的铝/镁复合材料的界面微观结构和断裂机理","authors":"Chen Liu, Yongchang Zhu, Ye Ma, Zhiyang Gao, Dan Ye, Qirong Li","doi":"10.1016/j.jallcom.2024.177650","DOIUrl":null,"url":null,"abstract":"Using the cyclic hot pressing method, Al/Mg laminated composites with a Zn interlayer were prepared, and the effect of temperature on the composite interfaces was studied. At 420℃, the composites interface is composed of HCP-Zn solid solution near the Al side and Laves phase near the Mg side. At 460℃, FCC-Al phase and τ-phase appear near the Al side, while τ-phase and HCP-Mg solid solution appear near the Mg side. Above 500℃, the interface is mainly composed of Al-Mg intermetallic compounds. The change of solubility during the formation of the composite causes the polarization of solute atoms in Zn and Al solid solutions, resulting in defects, such as increased grain boundary stress and lattice distortion. These defects lead to failure of the interface near the aluminum side of the composites. Composites prepared at 420℃ show the best ductile fracture properties. With the increase of preparation temperature, the fracture mode is transformed into brittle fracture induced by β-phase.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"34 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the interfacial microstructure and fracture mechanism of Al/Mg composites with Zn interlayer by cyclic hot pressing\",\"authors\":\"Chen Liu, Yongchang Zhu, Ye Ma, Zhiyang Gao, Dan Ye, Qirong Li\",\"doi\":\"10.1016/j.jallcom.2024.177650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the cyclic hot pressing method, Al/Mg laminated composites with a Zn interlayer were prepared, and the effect of temperature on the composite interfaces was studied. At 420℃, the composites interface is composed of HCP-Zn solid solution near the Al side and Laves phase near the Mg side. At 460℃, FCC-Al phase and τ-phase appear near the Al side, while τ-phase and HCP-Mg solid solution appear near the Mg side. Above 500℃, the interface is mainly composed of Al-Mg intermetallic compounds. The change of solubility during the formation of the composite causes the polarization of solute atoms in Zn and Al solid solutions, resulting in defects, such as increased grain boundary stress and lattice distortion. These defects lead to failure of the interface near the aluminum side of the composites. Composites prepared at 420℃ show the best ductile fracture properties. With the increase of preparation temperature, the fracture mode is transformed into brittle fracture induced by β-phase.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2024.177650\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177650","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Study on the interfacial microstructure and fracture mechanism of Al/Mg composites with Zn interlayer by cyclic hot pressing
Using the cyclic hot pressing method, Al/Mg laminated composites with a Zn interlayer were prepared, and the effect of temperature on the composite interfaces was studied. At 420℃, the composites interface is composed of HCP-Zn solid solution near the Al side and Laves phase near the Mg side. At 460℃, FCC-Al phase and τ-phase appear near the Al side, while τ-phase and HCP-Mg solid solution appear near the Mg side. Above 500℃, the interface is mainly composed of Al-Mg intermetallic compounds. The change of solubility during the formation of the composite causes the polarization of solute atoms in Zn and Al solid solutions, resulting in defects, such as increased grain boundary stress and lattice distortion. These defects lead to failure of the interface near the aluminum side of the composites. Composites prepared at 420℃ show the best ductile fracture properties. With the increase of preparation temperature, the fracture mode is transformed into brittle fracture induced by β-phase.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.