Sam Kobeissi, Nicholas N.A. Ling, Eric F. May, Michael L. Johns
求助PDF
{"title":"测量气态二元混合物的内部扩散系数","authors":"Sam Kobeissi, Nicholas N.A. Ling, Eric F. May, Michael L. Johns","doi":"10.1016/j.ces.2024.120952","DOIUrl":null,"url":null,"abstract":"Benchtop pulsed field gradient (PFG) nuclear magnetic resonance (NMR) measurements of the intra-diffusion coefficient (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">&#x2217;</mo></mrow></msubsup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -747.2 1282.4 1146.6\" width=\"2.979ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,320)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2217\"></use></g></g><g is=\"true\" transform=\"translate(828,-304)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-69\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></script></span>) for binary gaseous mixtures are presented as a function of composition, for temperature and pressure conditions broadly relevant to industrial and geological processes. This required the design, construction, and application of a novel NMR-compatible sapphire sample cell. Measurements were performed for methane–nitrogen, methane-helium, and methane-hydrogen mixtures, with compositions down to 0.5 mol% methane that were resolvable in a reasonable time frame. Consequently, extrapolation to infinite dilution was enabled, with the resultant values of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">&#x2217;</mo></mrow></msubsup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -747.2 1282.4 1146.6\" width=\"2.979ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,320)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2217\"></use></g></g><g is=\"true\" transform=\"translate(828,-304)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-69\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></script></span>(<em>x</em><sub>i</sub> = 0) compared with relevant mutual diffusion coefficients (<em>D</em><sub>12</sub>) from both literature and as estimated using kinetic theory (Thorne-Enskog equation). In the case of methane-helium mixtures, agreement was overwhelmingly within experimental uncertainty across the temperature–pressure parameter space explored, whereas in the case of methane–nitrogen, the determined values of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">&#x2217;</mo></mrow></msubsup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -747.2 1282.4 1146.6\" width=\"2.979ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,320)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2217\"></use></g></g><g is=\"true\" transform=\"translate(828,-304)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-69\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></script></span>(<em>x</em><sub>i</sub> = 0) were slightly larger than <em>D</em><sub>12</sub> data as predicted by kinetic theory. In the case of methane-hydrogen mixtures, simultaneous measurements of both methane and hydrogen intra-diffusion coefficients were possible. Agreement between <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">&#x2217;</mo></mrow></msubsup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -747.2 1282.4 1146.6\" width=\"2.979ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,320)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2217\"></use></g></g><g is=\"true\" transform=\"translate(828,-304)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-69\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></script></span>(<em>x</em><sub>i</sub> = 0) and kinetic theory was comfortably within experimental uncertainty in the case of hydrogen but deviated in the case of methane.","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"18 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurements of intra-diffusion coefficients for gaseous binary mixtures\",\"authors\":\"Sam Kobeissi, Nicholas N.A. Ling, Eric F. May, Michael L. Johns\",\"doi\":\"10.1016/j.ces.2024.120952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Benchtop pulsed field gradient (PFG) nuclear magnetic resonance (NMR) measurements of the intra-diffusion coefficient (<span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">D</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\">i</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">&#x2217;</mo></mrow></msubsup></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.663ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.928ex;\\\" viewbox=\\\"0 -747.2 1282.4 1146.6\\\" width=\\\"2.979ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-44\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(828,320)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2217\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(828,-304)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-69\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">D</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\">i</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∗</mo></mrow></msubsup></math></span></span><script type=\\\"math/mml\\\"><math><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">D</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\">i</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∗</mo></mrow></msubsup></math></script></span>) for binary gaseous mixtures are presented as a function of composition, for temperature and pressure conditions broadly relevant to industrial and geological processes. This required the design, construction, and application of a novel NMR-compatible sapphire sample cell. Measurements were performed for methane–nitrogen, methane-helium, and methane-hydrogen mixtures, with compositions down to 0.5 mol% methane that were resolvable in a reasonable time frame. Consequently, extrapolation to infinite dilution was enabled, with the resultant values of <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">D</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\">i</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">&#x2217;</mo></mrow></msubsup></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.663ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.928ex;\\\" viewbox=\\\"0 -747.2 1282.4 1146.6\\\" width=\\\"2.979ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-44\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(828,320)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2217\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(828,-304)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-69\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">D</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\">i</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∗</mo></mrow></msubsup></math></span></span><script type=\\\"math/mml\\\"><math><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">D</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\">i</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∗</mo></mrow></msubsup></math></script></span>(<em>x</em><sub>i</sub> = 0) compared with relevant mutual diffusion coefficients (<em>D</em><sub>12</sub>) from both literature and as estimated using kinetic theory (Thorne-Enskog equation). In the case of methane-helium mixtures, agreement was overwhelmingly within experimental uncertainty across the temperature–pressure parameter space explored, whereas in the case of methane–nitrogen, the determined values of <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">D</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\">i</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">&#x2217;</mo></mrow></msubsup></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.663ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.928ex;\\\" viewbox=\\\"0 -747.2 1282.4 1146.6\\\" width=\\\"2.979ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-44\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(828,320)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2217\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(828,-304)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-69\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">D</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\">i</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∗</mo></mrow></msubsup></math></span></span><script type=\\\"math/mml\\\"><math><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">D</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\">i</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∗</mo></mrow></msubsup></math></script></span>(<em>x</em><sub>i</sub> = 0) were slightly larger than <em>D</em><sub>12</sub> data as predicted by kinetic theory. In the case of methane-hydrogen mixtures, simultaneous measurements of both methane and hydrogen intra-diffusion coefficients were possible. Agreement between <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">D</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\">i</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">&#x2217;</mo></mrow></msubsup></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.663ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.928ex;\\\" viewbox=\\\"0 -747.2 1282.4 1146.6\\\" width=\\\"2.979ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-44\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(828,320)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2217\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(828,-304)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-69\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">D</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\">i</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∗</mo></mrow></msubsup></math></span></span><script type=\\\"math/mml\\\"><math><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">D</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\">i</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∗</mo></mrow></msubsup></math></script></span>(<em>x</em><sub>i</sub> = 0) and kinetic theory was comfortably within experimental uncertainty in the case of hydrogen but deviated in the case of methane.\",\"PeriodicalId\":271,\"journal\":{\"name\":\"Chemical Engineering Science\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ces.2024.120952\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ces.2024.120952","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
引用
批量引用