{"title":"通过接枝功能性有机分子利用金属有机框架的节点进行协同铀提取","authors":"Zixuan Ma, Chang Sun, Danyan Lin, Wen Yao, Hairui Hou, Dedong Wu, Xinrong Guo, Xin Yu, Xiangxue Wang","doi":"10.1016/j.seppur.2024.130607","DOIUrl":null,"url":null,"abstract":"High-efficiency elimination of uranium was a research hotspot from the aspect of nuclear energy development. Metal chelators and porous materials were two cutting-edge technologies for the recovery and separation of uranium from wastewater. However, there was only limited success in transferring the metal coordination function of metal chelators to chemically stable host materials. Herein, oxamic acid (OxA) and glycine (Gly) functionalized MOF-808 were prepared by a simple solvent-assisted ligand incorporation method and used for uranium removal. The ordered porous structure of MOFs provided rapid diffusion channels, and the introduction of amino acids on Zr<sub>6</sub> nodes endowed MOF-808 channels more functional groups with strong binding ability and high hydrophily. The MOF-808@OxA exhibited higher elimination ability (<em>q</em><sub>max</sub> = 370.76 mg·g<sup>−1</sup>), rapider elimination rate (∼40 min), and higher selectivity than those of MOF-808@Gly and original MOF-808 at pH = 5. Particularly, density functional theory calculations revealed that MOF-808@OxA had a stronger affinity for uranium compared to MOF-808@Gly due to the synergistic effect of C = O and –NH<sub>2</sub> groups. Thus, this study provided a feasible strategy for modifying MOFs and a promising prospect for MOF-based materials to eliminate uranium from wastewater.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"18 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting the nodes of metal-organic framework by grafting functional organic molecules for synergistic uranium extraction\",\"authors\":\"Zixuan Ma, Chang Sun, Danyan Lin, Wen Yao, Hairui Hou, Dedong Wu, Xinrong Guo, Xin Yu, Xiangxue Wang\",\"doi\":\"10.1016/j.seppur.2024.130607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-efficiency elimination of uranium was a research hotspot from the aspect of nuclear energy development. Metal chelators and porous materials were two cutting-edge technologies for the recovery and separation of uranium from wastewater. However, there was only limited success in transferring the metal coordination function of metal chelators to chemically stable host materials. Herein, oxamic acid (OxA) and glycine (Gly) functionalized MOF-808 were prepared by a simple solvent-assisted ligand incorporation method and used for uranium removal. The ordered porous structure of MOFs provided rapid diffusion channels, and the introduction of amino acids on Zr<sub>6</sub> nodes endowed MOF-808 channels more functional groups with strong binding ability and high hydrophily. The MOF-808@OxA exhibited higher elimination ability (<em>q</em><sub>max</sub> = 370.76 mg·g<sup>−1</sup>), rapider elimination rate (∼40 min), and higher selectivity than those of MOF-808@Gly and original MOF-808 at pH = 5. Particularly, density functional theory calculations revealed that MOF-808@OxA had a stronger affinity for uranium compared to MOF-808@Gly due to the synergistic effect of C = O and –NH<sub>2</sub> groups. Thus, this study provided a feasible strategy for modifying MOFs and a promising prospect for MOF-based materials to eliminate uranium from wastewater.\",\"PeriodicalId\":427,\"journal\":{\"name\":\"Separation and Purification Technology\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation and Purification Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.seppur.2024.130607\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2024.130607","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Exploiting the nodes of metal-organic framework by grafting functional organic molecules for synergistic uranium extraction
High-efficiency elimination of uranium was a research hotspot from the aspect of nuclear energy development. Metal chelators and porous materials were two cutting-edge technologies for the recovery and separation of uranium from wastewater. However, there was only limited success in transferring the metal coordination function of metal chelators to chemically stable host materials. Herein, oxamic acid (OxA) and glycine (Gly) functionalized MOF-808 were prepared by a simple solvent-assisted ligand incorporation method and used for uranium removal. The ordered porous structure of MOFs provided rapid diffusion channels, and the introduction of amino acids on Zr6 nodes endowed MOF-808 channels more functional groups with strong binding ability and high hydrophily. The MOF-808@OxA exhibited higher elimination ability (qmax = 370.76 mg·g−1), rapider elimination rate (∼40 min), and higher selectivity than those of MOF-808@Gly and original MOF-808 at pH = 5. Particularly, density functional theory calculations revealed that MOF-808@OxA had a stronger affinity for uranium compared to MOF-808@Gly due to the synergistic effect of C = O and –NH2 groups. Thus, this study provided a feasible strategy for modifying MOFs and a promising prospect for MOF-based materials to eliminate uranium from wastewater.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.