{"title":"具有优异微波吸收和高效散热双重功能的石墨烯-环氧树脂复合材料","authors":"Zhenqian Ma, Zhenliang Hao, Jingjie Dai, Hailong Zhang","doi":"10.1016/j.cej.2024.157807","DOIUrl":null,"url":null,"abstract":"Developing electronic packaging materials with both outstanding electromagnetic wave (EMW) absorption and efficient heat dissipation is crucial for addressing vital issues of electromagnetic interference and heat accumulation in modern integrated circuits. Herein, we present a graphene-epoxy composite with dual-function of excellent microwave absorption and efficient heat dissipation as a promising candidate. The composite was fabricated by immersing epoxy resin into graphene aerogel (GA) with precisely controlled directional pores. Before immersion, the GA was annealed at temperatures from 600 to 3000 °C to investigate the influence of oxygen content and defects in the graphene on wave absorbing and heat dissipating properties of the graphene-epoxy composite. The composite with the GA annealed at 1200 °C exhibits a minimum reflection loss of −35.67 dB at a frequency of 8.80 GHz with a sample thickness of 2.0 mm, and the thermal conductivity is 0.69 W m<sup>−1</sup> K<sup>−1</sup>, 283 % improvement over the epoxy matrix. Furthermore, the composite with the GA annealed at 2500 °C demonstrates an impressive absorption bandwidth (7.76 GHz) spanning from 10.24 to 18.00 GHz (covering a part of X-band and all the Ku-band) with a sample thickness of 3.0 mm, and the thermal conductivity is 6.81 W m<sup>−1</sup> K<sup>−1</sup>, 3683 % improvement over the matrix. The graphene-epoxy composite exhibits excellent EMW absorption performance and high thermal conductivity, highlighting promising applications as electronic packaging material in high-power integrated circuits.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"64 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphene-epoxy composite with dual-function of excellent microwave absorption and efficient heat dissipation\",\"authors\":\"Zhenqian Ma, Zhenliang Hao, Jingjie Dai, Hailong Zhang\",\"doi\":\"10.1016/j.cej.2024.157807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing electronic packaging materials with both outstanding electromagnetic wave (EMW) absorption and efficient heat dissipation is crucial for addressing vital issues of electromagnetic interference and heat accumulation in modern integrated circuits. Herein, we present a graphene-epoxy composite with dual-function of excellent microwave absorption and efficient heat dissipation as a promising candidate. The composite was fabricated by immersing epoxy resin into graphene aerogel (GA) with precisely controlled directional pores. Before immersion, the GA was annealed at temperatures from 600 to 3000 °C to investigate the influence of oxygen content and defects in the graphene on wave absorbing and heat dissipating properties of the graphene-epoxy composite. The composite with the GA annealed at 1200 °C exhibits a minimum reflection loss of −35.67 dB at a frequency of 8.80 GHz with a sample thickness of 2.0 mm, and the thermal conductivity is 0.69 W m<sup>−1</sup> K<sup>−1</sup>, 283 % improvement over the epoxy matrix. Furthermore, the composite with the GA annealed at 2500 °C demonstrates an impressive absorption bandwidth (7.76 GHz) spanning from 10.24 to 18.00 GHz (covering a part of X-band and all the Ku-band) with a sample thickness of 3.0 mm, and the thermal conductivity is 6.81 W m<sup>−1</sup> K<sup>−1</sup>, 3683 % improvement over the matrix. The graphene-epoxy composite exhibits excellent EMW absorption performance and high thermal conductivity, highlighting promising applications as electronic packaging material in high-power integrated circuits.\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.157807\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157807","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
要解决现代集成电路中的电磁干扰和热量积累等重要问题,开发具有出色电磁波吸收能力和高效散热能力的电子封装材料至关重要。在此,我们提出了一种具有优异微波吸收和高效散热双重功能的石墨烯-环氧树脂复合材料。这种复合材料是通过将环氧树脂浸入具有精确控制的定向孔隙的石墨烯气凝胶(GA)中制成的。在浸入之前,先将石墨烯气凝胶在 600 至 3000 ℃ 的温度下退火,以研究石墨烯中的氧含量和缺陷对石墨烯-环氧树脂复合材料吸波和散热性能的影响。在样品厚度为 2.0 mm、频率为 8.80 GHz 时,1200 °C 退火的石墨烯-环氧树脂复合材料的最小反射损耗为 -35.67 dB,导热系数为 0.69 W m-1 K-1,比环氧树脂基体提高了 283%。此外,2500 °C 退火的石墨烯-环氧树脂复合材料的吸收带宽(7.76 GHz)从 10.24 GHz 到 18.00 GHz(覆盖部分 X 波段和全部 Ku 波段),样品厚度为 3.0 mm,热导率为 6.81 W m-1 K-1,比基体提高了 3683%。石墨烯-环氧树脂复合材料具有优异的电磁波吸收性能和高热导率,有望用作大功率集成电路中的电子封装材料。
Graphene-epoxy composite with dual-function of excellent microwave absorption and efficient heat dissipation
Developing electronic packaging materials with both outstanding electromagnetic wave (EMW) absorption and efficient heat dissipation is crucial for addressing vital issues of electromagnetic interference and heat accumulation in modern integrated circuits. Herein, we present a graphene-epoxy composite with dual-function of excellent microwave absorption and efficient heat dissipation as a promising candidate. The composite was fabricated by immersing epoxy resin into graphene aerogel (GA) with precisely controlled directional pores. Before immersion, the GA was annealed at temperatures from 600 to 3000 °C to investigate the influence of oxygen content and defects in the graphene on wave absorbing and heat dissipating properties of the graphene-epoxy composite. The composite with the GA annealed at 1200 °C exhibits a minimum reflection loss of −35.67 dB at a frequency of 8.80 GHz with a sample thickness of 2.0 mm, and the thermal conductivity is 0.69 W m−1 K−1, 283 % improvement over the epoxy matrix. Furthermore, the composite with the GA annealed at 2500 °C demonstrates an impressive absorption bandwidth (7.76 GHz) spanning from 10.24 to 18.00 GHz (covering a part of X-band and all the Ku-band) with a sample thickness of 3.0 mm, and the thermal conductivity is 6.81 W m−1 K−1, 3683 % improvement over the matrix. The graphene-epoxy composite exhibits excellent EMW absorption performance and high thermal conductivity, highlighting promising applications as electronic packaging material in high-power integrated circuits.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.