揭示用于伪电容器和氧进化反应的超薄双金属 CoxNi1-x(OH)2 纳米片的性能

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Pallavi Bhaktapralhad Jagdale, Sayali Ashok Patil, Arupjyoti Pathak, Mukaddar Sk, Ranjit Thapa, Amanda Sfeir, Sebastien Royer, Akshaya Kumar Samal, Manav Saxena
{"title":"揭示用于伪电容器和氧进化反应的超薄双金属 CoxNi1-x(OH)2 纳米片的性能","authors":"Pallavi Bhaktapralhad Jagdale, Sayali Ashok Patil, Arupjyoti Pathak, Mukaddar Sk, Ranjit Thapa, Amanda Sfeir, Sebastien Royer, Akshaya Kumar Samal, Manav Saxena","doi":"10.1039/d4ta06846g","DOIUrl":null,"url":null,"abstract":"The rational design of highly efficient and stable electrodes is necessary for energy storage and electrocatalysis. Herein, we developed a nanometre thin bimetallic ultrathin Co<small><sub><em>x</em></sub></small>Ni<small><sub>1−<em>x</em></sub></small>(OH)<small><sub>2</sub></small> nanosheet with a large lateral size by the ionic layer epitaxy (ILE) technique as an efficient bifunctional electrode material for pseudocapacitors and the oxygen evolution reaction. Its electrochemical performance was readily tuned by controlling the Co/Ni ratio. The nanosheet with a 1 : 3 Co : Ni ratio (termed Co<small><sub>1</sub></small>Ni<small><sub>3</sub></small>-NS) showed an excellent volumetric (areal) capacitance of 3783 F cm<small><sup>−3</sup></small> (3 mF cm<small><sup>−2</sup></small>) at 0.3 mA cm<small><sup>−2</sup></small> with 336 mW h cm<small><sup>−3</sup></small> energy density at 256 W cm<small><sup>−3</sup></small> power density and excellent stability, substantially outperforming other monometallic and bimetallic NSs. Moreover, as an electrocatalyst, Co<small><sub>1</sub></small>Ni<small><sub>3</sub></small>-NS delivered a lower overpotential (<em>η</em><small><sub>10</sub></small> = 318 mV) and Tafel slope (61 mV dec<small><sup>−1</sup></small>) in an alkaline environment. <em>In situ</em> Raman spectroscopy was employed to demonstrate the dynamic structural evolution of the catalyst during the OER process. Furthermore, DFT investigations further revealed that Co<small><sub>1</sub></small>Ni<small><sub>3</sub></small>-NS is a promising electrode with higher quantum capacitance and lower overpotential compared to other Co/Ni ratios. These findings pave a new way for controlled synthesis of highly efficient, bimetallic, and bifunctional electrode materials for pseudocapacitors and the OER.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"232 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the performance of ultrathin bimetallic CoxNi1−x(OH)2 nanosheets for pseudocapacitors and oxygen evolution reaction\",\"authors\":\"Pallavi Bhaktapralhad Jagdale, Sayali Ashok Patil, Arupjyoti Pathak, Mukaddar Sk, Ranjit Thapa, Amanda Sfeir, Sebastien Royer, Akshaya Kumar Samal, Manav Saxena\",\"doi\":\"10.1039/d4ta06846g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rational design of highly efficient and stable electrodes is necessary for energy storage and electrocatalysis. Herein, we developed a nanometre thin bimetallic ultrathin Co<small><sub><em>x</em></sub></small>Ni<small><sub>1−<em>x</em></sub></small>(OH)<small><sub>2</sub></small> nanosheet with a large lateral size by the ionic layer epitaxy (ILE) technique as an efficient bifunctional electrode material for pseudocapacitors and the oxygen evolution reaction. Its electrochemical performance was readily tuned by controlling the Co/Ni ratio. The nanosheet with a 1 : 3 Co : Ni ratio (termed Co<small><sub>1</sub></small>Ni<small><sub>3</sub></small>-NS) showed an excellent volumetric (areal) capacitance of 3783 F cm<small><sup>−3</sup></small> (3 mF cm<small><sup>−2</sup></small>) at 0.3 mA cm<small><sup>−2</sup></small> with 336 mW h cm<small><sup>−3</sup></small> energy density at 256 W cm<small><sup>−3</sup></small> power density and excellent stability, substantially outperforming other monometallic and bimetallic NSs. Moreover, as an electrocatalyst, Co<small><sub>1</sub></small>Ni<small><sub>3</sub></small>-NS delivered a lower overpotential (<em>η</em><small><sub>10</sub></small> = 318 mV) and Tafel slope (61 mV dec<small><sup>−1</sup></small>) in an alkaline environment. <em>In situ</em> Raman spectroscopy was employed to demonstrate the dynamic structural evolution of the catalyst during the OER process. Furthermore, DFT investigations further revealed that Co<small><sub>1</sub></small>Ni<small><sub>3</sub></small>-NS is a promising electrode with higher quantum capacitance and lower overpotential compared to other Co/Ni ratios. These findings pave a new way for controlled synthesis of highly efficient, bimetallic, and bifunctional electrode materials for pseudocapacitors and the OER.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\"232 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ta06846g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta06846g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

合理设计高效稳定的电极对于能量存储和电催化来说非常必要。在此,我们利用离子层外延(ILE)技术开发了一种纳米级超薄双金属 CoxNi1-x(OH)2纳米片,该纳米片具有较大的横向尺寸,是一种用于伪电容器和氧进化反应的高效双功能电极材料。通过控制钴/镍的比例,可以很容易地调整其电化学性能。钴/镍比为 1 :3 Co :镍比为 1 : 3 的纳米片(称为 Co1Ni3-NS)在 0.3 mA cm-2 的条件下显示出 3783 F cm-3 (3 mF cm-2)的出色体积(面积)电容,在 256 W cm-3 功率密度条件下具有 336 mW h cm-3 的能量密度和出色的稳定性,大大优于其他单金属和双金属 NSs。此外,作为一种电催化剂,Co1Ni3-NS 在碱性环境中具有较低的过电位(η10 = 318 mV)和 Tafel 斜坡(61 mV dec-1)。原位拉曼光谱被用来证明催化剂在 OER 过程中的动态结构演变。此外,DFT 研究进一步揭示了 Co1Ni3-NS 是一种很有前途的电极,与其他 Co/Ni 比率相比,它具有更高的量子电容和更低的过电位。这些发现为可控合成用于伪电容器和 OER 的高效、双金属和双功能电极材料铺平了新的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unveiling the performance of ultrathin bimetallic CoxNi1−x(OH)2 nanosheets for pseudocapacitors and oxygen evolution reaction

Unveiling the performance of ultrathin bimetallic CoxNi1−x(OH)2 nanosheets for pseudocapacitors and oxygen evolution reaction
The rational design of highly efficient and stable electrodes is necessary for energy storage and electrocatalysis. Herein, we developed a nanometre thin bimetallic ultrathin CoxNi1−x(OH)2 nanosheet with a large lateral size by the ionic layer epitaxy (ILE) technique as an efficient bifunctional electrode material for pseudocapacitors and the oxygen evolution reaction. Its electrochemical performance was readily tuned by controlling the Co/Ni ratio. The nanosheet with a 1 : 3 Co : Ni ratio (termed Co1Ni3-NS) showed an excellent volumetric (areal) capacitance of 3783 F cm−3 (3 mF cm−2) at 0.3 mA cm−2 with 336 mW h cm−3 energy density at 256 W cm−3 power density and excellent stability, substantially outperforming other monometallic and bimetallic NSs. Moreover, as an electrocatalyst, Co1Ni3-NS delivered a lower overpotential (η10 = 318 mV) and Tafel slope (61 mV dec−1) in an alkaline environment. In situ Raman spectroscopy was employed to demonstrate the dynamic structural evolution of the catalyst during the OER process. Furthermore, DFT investigations further revealed that Co1Ni3-NS is a promising electrode with higher quantum capacitance and lower overpotential compared to other Co/Ni ratios. These findings pave a new way for controlled synthesis of highly efficient, bimetallic, and bifunctional electrode materials for pseudocapacitors and the OER.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信