不同最终用途的温带玉米杂交种的产量测定:生态生理学分析

IF 2 3区 农林科学 Q2 AGRONOMY
Crop Science Pub Date : 2024-11-18 DOI:10.1002/csc2.21414
Yésica D. Chazarreta, Santiago Alvarez Prado, Víctor D. Giménez, Ana J. P. Carcedo, César G. López, Ignacio A. Ciampitti, Maria E. Otegui
{"title":"不同最终用途的温带玉米杂交种的产量测定:生态生理学分析","authors":"Yésica D. Chazarreta, Santiago Alvarez Prado, Víctor D. Giménez, Ana J. P. Carcedo, César G. López, Ignacio A. Ciampitti, Maria E. Otegui","doi":"10.1002/csc2.21414","DOIUrl":null,"url":null,"abstract":"Maize (<i>Zea mays</i> L.) production in Argentina changed markedly during the last decade due to the widespread adoption of late sowing dates, expanding its productive area, and diversifying crop end-uses. This study was conducted to assess how the sowing date and nitrogen (N) availability affect grain yield, its physiological determinants (biomass and its partitioning), and numeric components (kernel number and kernel weight) of maize hybrids marketed for different end-uses. Field experiments were conducted in two growing seasons (2019–2020 and 2020–2021) and two sowing dates within each season (early and late) at a site in the main maize-producing region of Argentina. Within each season × sowing date combination, eight commercial maize hybrids (commercialized as grain, dual-purpose, or silage) were tested under two N levels (N0: no N applied; N250: fertilized with 250 kg N ha<sup>−1</sup>). The greatest grain yield, biomass, kernel number, and harvest index corresponded to the grain hybrids. Dual-purpose hybrids showed an intermediate grain yield, the highest kernel weight, and a more “<i>silage</i>” than “<i>graniferous</i>” behavior. Silage hybrids had improved light interception up to silking + 15 days (R2) but exhibited the lowest grain yield. Differences in end-use steered crop breeding efforts toward different physiological strategies. The improved understanding of the physiological mechanisms underlying the productivity among maize hybrids with varying end-uses will assist in the selection and management of suitable cultivars to be grown under different systems and environmental variations associated with an extended sowing date period.","PeriodicalId":10849,"journal":{"name":"Crop Science","volume":"128 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Yield determination of temperate maize hybrids with different end-uses: An ecophysiological analysis\",\"authors\":\"Yésica D. Chazarreta, Santiago Alvarez Prado, Víctor D. Giménez, Ana J. P. Carcedo, César G. López, Ignacio A. Ciampitti, Maria E. Otegui\",\"doi\":\"10.1002/csc2.21414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maize (<i>Zea mays</i> L.) production in Argentina changed markedly during the last decade due to the widespread adoption of late sowing dates, expanding its productive area, and diversifying crop end-uses. This study was conducted to assess how the sowing date and nitrogen (N) availability affect grain yield, its physiological determinants (biomass and its partitioning), and numeric components (kernel number and kernel weight) of maize hybrids marketed for different end-uses. Field experiments were conducted in two growing seasons (2019–2020 and 2020–2021) and two sowing dates within each season (early and late) at a site in the main maize-producing region of Argentina. Within each season × sowing date combination, eight commercial maize hybrids (commercialized as grain, dual-purpose, or silage) were tested under two N levels (N0: no N applied; N250: fertilized with 250 kg N ha<sup>−1</sup>). The greatest grain yield, biomass, kernel number, and harvest index corresponded to the grain hybrids. Dual-purpose hybrids showed an intermediate grain yield, the highest kernel weight, and a more “<i>silage</i>” than “<i>graniferous</i>” behavior. Silage hybrids had improved light interception up to silking + 15 days (R2) but exhibited the lowest grain yield. Differences in end-use steered crop breeding efforts toward different physiological strategies. The improved understanding of the physiological mechanisms underlying the productivity among maize hybrids with varying end-uses will assist in the selection and management of suitable cultivars to be grown under different systems and environmental variations associated with an extended sowing date period.\",\"PeriodicalId\":10849,\"journal\":{\"name\":\"Crop Science\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/csc2.21414\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/csc2.21414","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

过去十年间,由于普遍采用晚播日期、扩大生产面积以及作物最终用途多样化,阿根廷的玉米(Zea mays L.)生产发生了显著变化。本研究旨在评估播种日期和氮素(N)供应量如何影响用于不同最终用途的玉米杂交种的谷物产量、其生理决定因素(生物量及其分配)和数值成分(粒数和粒重)。在阿根廷玉米主产区的一个地点进行了两个生长季(2019-2020 年和 2020-2021 年)和每个生长季中两个播种期(早播和晚播)的田间试验。在每个季节×播种日期组合中,在两种氮水平(N0:不施氮;N250:每公顷施肥 250 千克氮)下对 8 个商品玉米杂交种(商品化为谷物、两用玉米或青贮玉米)进行了测试。谷物杂交种的谷物产量、生物量、果仁数和收获指数最高。两用杂交种的谷物产量居中,籽粒重量最高,表现为 "青贮 "而非 "颗粒"。青贮杂交种在成丝 + 15 天(R2)前的截光性有所改善,但谷物产量最低。最终用途的不同使作物育种工作转向不同的生理策略。对具有不同最终用途的玉米杂交种生产率的生理机制的进一步了解,将有助于选择和管理适合在不同系统和与延长播种期相关的环境变化下种植的栽培品种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Yield determination of temperate maize hybrids with different end-uses: An ecophysiological analysis
Maize (Zea mays L.) production in Argentina changed markedly during the last decade due to the widespread adoption of late sowing dates, expanding its productive area, and diversifying crop end-uses. This study was conducted to assess how the sowing date and nitrogen (N) availability affect grain yield, its physiological determinants (biomass and its partitioning), and numeric components (kernel number and kernel weight) of maize hybrids marketed for different end-uses. Field experiments were conducted in two growing seasons (2019–2020 and 2020–2021) and two sowing dates within each season (early and late) at a site in the main maize-producing region of Argentina. Within each season × sowing date combination, eight commercial maize hybrids (commercialized as grain, dual-purpose, or silage) were tested under two N levels (N0: no N applied; N250: fertilized with 250 kg N ha−1). The greatest grain yield, biomass, kernel number, and harvest index corresponded to the grain hybrids. Dual-purpose hybrids showed an intermediate grain yield, the highest kernel weight, and a more “silage” than “graniferous” behavior. Silage hybrids had improved light interception up to silking + 15 days (R2) but exhibited the lowest grain yield. Differences in end-use steered crop breeding efforts toward different physiological strategies. The improved understanding of the physiological mechanisms underlying the productivity among maize hybrids with varying end-uses will assist in the selection and management of suitable cultivars to be grown under different systems and environmental variations associated with an extended sowing date period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crop Science
Crop Science 农林科学-农艺学
CiteScore
4.50
自引率
8.70%
发文量
197
审稿时长
3 months
期刊介绍: Articles in Crop Science are of interest to researchers, policy makers, educators, and practitioners. The scope of articles in Crop Science includes crop breeding and genetics; crop physiology and metabolism; crop ecology, production, and management; seed physiology, production, and technology; turfgrass science; forage and grazing land ecology and management; genomics, molecular genetics, and biotechnology; germplasm collections and their use; and biomedical, health beneficial, and nutritionally enhanced plants. Crop Science publishes thematic collections of articles across its scope and includes topical Review and Interpretation, and Perspectives articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信