{"title":"利用残差图卷积网络和多特征融合增强运动图像分类能力","authors":"Fangzhou Xu, Weiyou Shi, Chengyan Lv, Yuan Sun, Shuai Guo, Chao Feng, Yang Zhang, Tzyy-Ping Jung, Jiancai Leng","doi":"10.1142/S0129065724500692","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke, an abrupt cerebrovascular ailment resulting in brain tissue damage, has prompted the adoption of motor imagery (MI)-based brain-computer interface (BCI) systems in stroke rehabilitation. However, analyzing electroencephalogram (EEG) signals from stroke patients poses challenges. To address the issues of low accuracy and efficiency in EEG classification, particularly involving MI, the study proposes a residual graph convolutional network (M-ResGCN) framework based on the modified <i>S</i>-transform (MST), and introduces the self-attention mechanism into residual graph convolutional network (ResGCN). This study uses MST to extract EEG time-frequency domain features, derives spatial EEG features by calculating the absolute Pearson correlation coefficient (aPcc) between channels, and devises a method to construct the adjacency matrix of the brain network using aPcc to measure the strength of the connection between channels. Experimental results involving 16 stroke patients and 16 healthy subjects demonstrate significant improvements in classification quality and robustness across tests and subjects. The highest classification accuracy reached 94.91% and a Kappa coefficient of 0.8918. The average accuracy and <i>F</i>1 scores from 10 times 10-fold cross-validation are 94.38% and 94.36%, respectively. By validating the feasibility and applicability of brain networks constructed using the aPcc in EEG signal analysis and feature encoding, it was established that the aPcc effectively reflects overall brain activity. The proposed method presents a novel approach to exploring channel relationships in MI-EEG and improving classification performance. It holds promise for real-time applications in MI-based BCI systems.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450069"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Motor Imagery Classification with Residual Graph Convolutional Networks and Multi-Feature Fusion.\",\"authors\":\"Fangzhou Xu, Weiyou Shi, Chengyan Lv, Yuan Sun, Shuai Guo, Chao Feng, Yang Zhang, Tzyy-Ping Jung, Jiancai Leng\",\"doi\":\"10.1142/S0129065724500692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stroke, an abrupt cerebrovascular ailment resulting in brain tissue damage, has prompted the adoption of motor imagery (MI)-based brain-computer interface (BCI) systems in stroke rehabilitation. However, analyzing electroencephalogram (EEG) signals from stroke patients poses challenges. To address the issues of low accuracy and efficiency in EEG classification, particularly involving MI, the study proposes a residual graph convolutional network (M-ResGCN) framework based on the modified <i>S</i>-transform (MST), and introduces the self-attention mechanism into residual graph convolutional network (ResGCN). This study uses MST to extract EEG time-frequency domain features, derives spatial EEG features by calculating the absolute Pearson correlation coefficient (aPcc) between channels, and devises a method to construct the adjacency matrix of the brain network using aPcc to measure the strength of the connection between channels. Experimental results involving 16 stroke patients and 16 healthy subjects demonstrate significant improvements in classification quality and robustness across tests and subjects. The highest classification accuracy reached 94.91% and a Kappa coefficient of 0.8918. The average accuracy and <i>F</i>1 scores from 10 times 10-fold cross-validation are 94.38% and 94.36%, respectively. By validating the feasibility and applicability of brain networks constructed using the aPcc in EEG signal analysis and feature encoding, it was established that the aPcc effectively reflects overall brain activity. The proposed method presents a novel approach to exploring channel relationships in MI-EEG and improving classification performance. It holds promise for real-time applications in MI-based BCI systems.</p>\",\"PeriodicalId\":94052,\"journal\":{\"name\":\"International journal of neural systems\",\"volume\":\" \",\"pages\":\"2450069\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of neural systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065724500692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065724500692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
中风是一种导致脑组织损伤的突发性脑血管疾病,它促使人们在中风康复中采用基于运动图像(MI)的脑机接口(BCI)系统。然而,分析中风患者的脑电图(EEG)信号是一项挑战。为了解决脑电图分类(尤其是涉及 MI 的脑电图分类)的低准确率和低效率问题,本研究提出了一种基于修正 S 变换(MST)的残差图卷积网络(M-ResGCN)框架,并在残差图卷积网络(ResGCN)中引入了自注意机制。本研究利用 MST 提取脑电图时频域特征,通过计算通道间的绝对皮尔逊相关系数(aPcc)得出脑电图空间特征,并设计了一种利用 aPcc 构建脑网络邻接矩阵的方法,以衡量通道间连接的强度。16 名中风患者和 16 名健康受试者的实验结果表明,在不同的测试和受试者中,分类质量和鲁棒性都有显著提高。最高分类准确率达到 94.91%,Kappa 系数为 0.8918。10 次 10 倍交叉验证的平均准确率和 F1 分数分别为 94.38% 和 94.36%。通过验证利用 aPcc 构建的脑网络在脑电信号分析和特征编码中的可行性和适用性,确定了 aPcc 能有效反映大脑的整体活动。所提出的方法为探索 MI-EEG 中的通道关系和提高分类性能提供了一种新方法。它有望在基于 MI 的生物识别(BCI)系统中得到实时应用。
Enhancing Motor Imagery Classification with Residual Graph Convolutional Networks and Multi-Feature Fusion.
Stroke, an abrupt cerebrovascular ailment resulting in brain tissue damage, has prompted the adoption of motor imagery (MI)-based brain-computer interface (BCI) systems in stroke rehabilitation. However, analyzing electroencephalogram (EEG) signals from stroke patients poses challenges. To address the issues of low accuracy and efficiency in EEG classification, particularly involving MI, the study proposes a residual graph convolutional network (M-ResGCN) framework based on the modified S-transform (MST), and introduces the self-attention mechanism into residual graph convolutional network (ResGCN). This study uses MST to extract EEG time-frequency domain features, derives spatial EEG features by calculating the absolute Pearson correlation coefficient (aPcc) between channels, and devises a method to construct the adjacency matrix of the brain network using aPcc to measure the strength of the connection between channels. Experimental results involving 16 stroke patients and 16 healthy subjects demonstrate significant improvements in classification quality and robustness across tests and subjects. The highest classification accuracy reached 94.91% and a Kappa coefficient of 0.8918. The average accuracy and F1 scores from 10 times 10-fold cross-validation are 94.38% and 94.36%, respectively. By validating the feasibility and applicability of brain networks constructed using the aPcc in EEG signal analysis and feature encoding, it was established that the aPcc effectively reflects overall brain activity. The proposed method presents a novel approach to exploring channel relationships in MI-EEG and improving classification performance. It holds promise for real-time applications in MI-based BCI systems.