白细胞介素-1 1 型受体阻断剂可减轻雄性加州大学戴维斯分校 2 型糖尿病大鼠夸张的运动加压反射。

IF 4.7 2区 医学 Q1 NEUROSCIENCES
Yu Huo, Milena Samora, Richard K McCuller, Kimber L Stanhope, Peter J Havel, Michelle L Harrison, Audrey J Stone
{"title":"白细胞介素-1 1 型受体阻断剂可减轻雄性加州大学戴维斯分校 2 型糖尿病大鼠夸张的运动加压反射。","authors":"Yu Huo, Milena Samora, Richard K McCuller, Kimber L Stanhope, Peter J Havel, Michelle L Harrison, Audrey J Stone","doi":"10.1113/JP287120","DOIUrl":null,"url":null,"abstract":"<p><p>An exaggerated exercise pressor reflex and peripheral neuropathy are both evoked by the same type of thinly myelinated afferents and are present in patients with type 2 diabetes mellitus (T2DM). Although it is known that the pro-inflammatory cytokine interleukin-1β (IL-1β) contributes to peripheral neuropathy, the effects of IL-1β on the exercise pressor reflex in T2DM are not known. Therefore, we aimed to determine the effect of IL-1 receptors on the exercise pressor reflex in T2DM. We compared changes in peak pressor (mean arterial pressure; ΔMAP), blood pressure index (ΔBPi), heart rate (ΔHR) and heart rate index (ΔHRi) responses to static and intermittent contractions and tendon stretch before and after peripheral IL-1 type 1 receptor blockade (anakinra, Kineret<sup>®</sup>) in T2DM and healthy male rats and IL-1 receptor activation (IL-1β) in healthy rats. Blocking IL-1 receptors significantly attenuated the ΔMAP and ΔBPi to static contraction in T2DM rats. Furthermore, blocking IL-1 receptors significantly attenuated the ΔMAP, ΔBPi and ΔHRi to intermittent contraction, and ΔMAP to tendon stretch in T2DM rats (all P < 0.05). In addition, IL-1 receptor activation significantly exaggerated the ΔMAP and ΔBPi to static contraction and ΔMAP, ΔBPi and ΔHR to intermittent contraction in healthy rats, all P < 0.05. Furthermore, circulating IL-1β serum concentrations were significantly greater in T2DM rats than in healthy rats (P < 0.05). We conclude that IL-1 signalling contributes to the exaggerated exercise pressor reflex in T2DM, suggesting for the first time that inflammatory cytokines play a critical role in exaggerated blood pressure responses to exercise in those with T2DM. KEY POINTS: Chronic inflammation, a complication of type 2 diabetes mellitus (T2DM), causes increased production of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumour necrosis factor-α. IL-1β has been shown to sensitize muscle afferents that conduct the exercise pressor reflex. We found blocking of IL-1 receptors by anakinra (Kineret<sup>®</sup>), an IL-1 type 1 receptor antagonist, significantly attenuated the exaggerated exercise pressor reflex in T2DM rats, but not in healthy rats. In addition, activating IL-1 receptors with IL-1β significantly augmented the exercise pressor reflex in healthy rats. Our findings suggest that IL-1 receptors, by mediating IL-1β signalling, play a role in exaggerating the exercise pressor reflex in T2DM. These results highlight the complex interplay between inflammation and the autonomic nervous system in regulating cardiovascular function, and the potential for using an FDA-approved IL-1 receptor antagonist, Kineret<sup>®</sup>, as a therapeutic approach to reduce adverse cardiovascular events during physical activity in those with T2DM.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interleukin-1 type 1 receptor blockade attenuates the exaggerated exercise pressor reflex in male UC Davis type 2 diabetic mellitus rats.\",\"authors\":\"Yu Huo, Milena Samora, Richard K McCuller, Kimber L Stanhope, Peter J Havel, Michelle L Harrison, Audrey J Stone\",\"doi\":\"10.1113/JP287120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An exaggerated exercise pressor reflex and peripheral neuropathy are both evoked by the same type of thinly myelinated afferents and are present in patients with type 2 diabetes mellitus (T2DM). Although it is known that the pro-inflammatory cytokine interleukin-1β (IL-1β) contributes to peripheral neuropathy, the effects of IL-1β on the exercise pressor reflex in T2DM are not known. Therefore, we aimed to determine the effect of IL-1 receptors on the exercise pressor reflex in T2DM. We compared changes in peak pressor (mean arterial pressure; ΔMAP), blood pressure index (ΔBPi), heart rate (ΔHR) and heart rate index (ΔHRi) responses to static and intermittent contractions and tendon stretch before and after peripheral IL-1 type 1 receptor blockade (anakinra, Kineret<sup>®</sup>) in T2DM and healthy male rats and IL-1 receptor activation (IL-1β) in healthy rats. Blocking IL-1 receptors significantly attenuated the ΔMAP and ΔBPi to static contraction in T2DM rats. Furthermore, blocking IL-1 receptors significantly attenuated the ΔMAP, ΔBPi and ΔHRi to intermittent contraction, and ΔMAP to tendon stretch in T2DM rats (all P < 0.05). In addition, IL-1 receptor activation significantly exaggerated the ΔMAP and ΔBPi to static contraction and ΔMAP, ΔBPi and ΔHR to intermittent contraction in healthy rats, all P < 0.05. Furthermore, circulating IL-1β serum concentrations were significantly greater in T2DM rats than in healthy rats (P < 0.05). We conclude that IL-1 signalling contributes to the exaggerated exercise pressor reflex in T2DM, suggesting for the first time that inflammatory cytokines play a critical role in exaggerated blood pressure responses to exercise in those with T2DM. KEY POINTS: Chronic inflammation, a complication of type 2 diabetes mellitus (T2DM), causes increased production of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumour necrosis factor-α. IL-1β has been shown to sensitize muscle afferents that conduct the exercise pressor reflex. We found blocking of IL-1 receptors by anakinra (Kineret<sup>®</sup>), an IL-1 type 1 receptor antagonist, significantly attenuated the exaggerated exercise pressor reflex in T2DM rats, but not in healthy rats. In addition, activating IL-1 receptors with IL-1β significantly augmented the exercise pressor reflex in healthy rats. Our findings suggest that IL-1 receptors, by mediating IL-1β signalling, play a role in exaggerating the exercise pressor reflex in T2DM. These results highlight the complex interplay between inflammation and the autonomic nervous system in regulating cardiovascular function, and the potential for using an FDA-approved IL-1 receptor antagonist, Kineret<sup>®</sup>, as a therapeutic approach to reduce adverse cardiovascular events during physical activity in those with T2DM.</p>\",\"PeriodicalId\":50088,\"journal\":{\"name\":\"Journal of Physiology-London\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology-London\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/JP287120\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP287120","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

夸张的运动加压反射和周围神经病变都是由同一类髓鞘薄的传入神经诱发的,而且都出现在 2 型糖尿病(T2DM)患者身上。虽然人们知道促炎细胞因子白细胞介素-1β(IL-1β)会导致周围神经病变,但 IL-1β 对 T2DM 患者运动加压反射的影响尚不清楚。因此,我们旨在确定 IL-1 受体对 T2DM 运动加压反射的影响。我们比较了 T2DM 和健康雄性大鼠在外周 IL-1 1 型受体阻断(anakinra, Kineret®)前后以及健康大鼠 IL-1 受体激活(IL-1β)前后对静态和间歇收缩及肌腱拉伸的峰值加压(平均动脉压;ΔMAP)、血压指数(ΔBPi)、心率(ΔHR)和心率指数(ΔHRi)反应的变化。阻断 IL-1 受体可明显减弱 T2DM 大鼠静态收缩时的ΔMAP 和 ΔBPi。此外,阻断 IL-1 受体可明显减弱 T2DM 大鼠间歇收缩时的ΔMAP、ΔBPi 和 ΔHRi 以及肌腱拉伸时的ΔMAP(均为 P ®),IL-1 1 型受体拮抗剂可明显减弱 T2DM 大鼠夸张的运动加压反射,而健康大鼠则不会。此外,用 IL-1β 激活 IL-1 受体可明显增强健康大鼠的运动加压反射。我们的研究结果表明,IL-1受体通过介导IL-1β信号,在T2DM大鼠的运动加压反射中发挥了作用。这些结果突显了炎症和自律神经系统在调节心血管功能方面的复杂相互作用,以及使用美国食品及药物管理局批准的 IL-1 受体拮抗剂 Kineret® 作为治疗方法的潜力,以减少 T2DM 患者在体育锻炼期间的不良心血管事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interleukin-1 type 1 receptor blockade attenuates the exaggerated exercise pressor reflex in male UC Davis type 2 diabetic mellitus rats.

An exaggerated exercise pressor reflex and peripheral neuropathy are both evoked by the same type of thinly myelinated afferents and are present in patients with type 2 diabetes mellitus (T2DM). Although it is known that the pro-inflammatory cytokine interleukin-1β (IL-1β) contributes to peripheral neuropathy, the effects of IL-1β on the exercise pressor reflex in T2DM are not known. Therefore, we aimed to determine the effect of IL-1 receptors on the exercise pressor reflex in T2DM. We compared changes in peak pressor (mean arterial pressure; ΔMAP), blood pressure index (ΔBPi), heart rate (ΔHR) and heart rate index (ΔHRi) responses to static and intermittent contractions and tendon stretch before and after peripheral IL-1 type 1 receptor blockade (anakinra, Kineret®) in T2DM and healthy male rats and IL-1 receptor activation (IL-1β) in healthy rats. Blocking IL-1 receptors significantly attenuated the ΔMAP and ΔBPi to static contraction in T2DM rats. Furthermore, blocking IL-1 receptors significantly attenuated the ΔMAP, ΔBPi and ΔHRi to intermittent contraction, and ΔMAP to tendon stretch in T2DM rats (all P < 0.05). In addition, IL-1 receptor activation significantly exaggerated the ΔMAP and ΔBPi to static contraction and ΔMAP, ΔBPi and ΔHR to intermittent contraction in healthy rats, all P < 0.05. Furthermore, circulating IL-1β serum concentrations were significantly greater in T2DM rats than in healthy rats (P < 0.05). We conclude that IL-1 signalling contributes to the exaggerated exercise pressor reflex in T2DM, suggesting for the first time that inflammatory cytokines play a critical role in exaggerated blood pressure responses to exercise in those with T2DM. KEY POINTS: Chronic inflammation, a complication of type 2 diabetes mellitus (T2DM), causes increased production of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumour necrosis factor-α. IL-1β has been shown to sensitize muscle afferents that conduct the exercise pressor reflex. We found blocking of IL-1 receptors by anakinra (Kineret®), an IL-1 type 1 receptor antagonist, significantly attenuated the exaggerated exercise pressor reflex in T2DM rats, but not in healthy rats. In addition, activating IL-1 receptors with IL-1β significantly augmented the exercise pressor reflex in healthy rats. Our findings suggest that IL-1 receptors, by mediating IL-1β signalling, play a role in exaggerating the exercise pressor reflex in T2DM. These results highlight the complex interplay between inflammation and the autonomic nervous system in regulating cardiovascular function, and the potential for using an FDA-approved IL-1 receptor antagonist, Kineret®, as a therapeutic approach to reduce adverse cardiovascular events during physical activity in those with T2DM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physiology-London
Journal of Physiology-London 医学-神经科学
CiteScore
9.70
自引率
7.30%
发文量
817
审稿时长
2 months
期刊介绍: The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew. The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信