{"title":"测试寄生虫复杂生命周期进化的交配系统模型揭示了人口统计学驱动的混合交配。","authors":"Jenna M Hulke, Charles D Criscione","doi":"10.1086/732807","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractMany parasite species use multiple host species to complete development; however, empirical tests of models that seek to understand factors impacting evolutionary changes or maintenance of host number in parasite life cycles are scarce. Specifically, one model incorporating parasite mating systems that posits that multihost life cycles are an adaptation to prevent inbreeding in hermaphroditic parasites and thus preclude inbreeding depression remains untested. The model assumes that loss of a host results in parasite inbreeding and predicts that host loss can evolve only if there is no parasite inbreeding depression. We provide the first empirical tests of this model using a novel approach we developed for assessing inbreeding depression from field-collected parasite samples. The method compares genetically based selfing rate estimates to a demographic-based selfing rate, which was derived from the closed mating system experienced by endoparasites. Results from the hermaphroditic trematode <i>Alloglossidium renale</i>, which has a derived two-host life cycle, supported both the assumption and the prediction of the mating system model, as this highly inbred species had no indication of inbreeding depression. Additionally, comparisons of genetic and demographic selfing rates revealed a mixed mating system that could be explained completely by the parasite's demography (i.e., its infection intensities).</p>","PeriodicalId":50800,"journal":{"name":"American Naturalist","volume":"204 6","pages":"600-615"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing the Mating System Model of Parasite Complex Life Cycle Evolution Reveals Demographically Driven Mixed Mating.\",\"authors\":\"Jenna M Hulke, Charles D Criscione\",\"doi\":\"10.1086/732807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractMany parasite species use multiple host species to complete development; however, empirical tests of models that seek to understand factors impacting evolutionary changes or maintenance of host number in parasite life cycles are scarce. Specifically, one model incorporating parasite mating systems that posits that multihost life cycles are an adaptation to prevent inbreeding in hermaphroditic parasites and thus preclude inbreeding depression remains untested. The model assumes that loss of a host results in parasite inbreeding and predicts that host loss can evolve only if there is no parasite inbreeding depression. We provide the first empirical tests of this model using a novel approach we developed for assessing inbreeding depression from field-collected parasite samples. The method compares genetically based selfing rate estimates to a demographic-based selfing rate, which was derived from the closed mating system experienced by endoparasites. Results from the hermaphroditic trematode <i>Alloglossidium renale</i>, which has a derived two-host life cycle, supported both the assumption and the prediction of the mating system model, as this highly inbred species had no indication of inbreeding depression. Additionally, comparisons of genetic and demographic selfing rates revealed a mixed mating system that could be explained completely by the parasite's demography (i.e., its infection intensities).</p>\",\"PeriodicalId\":50800,\"journal\":{\"name\":\"American Naturalist\",\"volume\":\"204 6\",\"pages\":\"600-615\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Naturalist\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1086/732807\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Naturalist","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1086/732807","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Testing the Mating System Model of Parasite Complex Life Cycle Evolution Reveals Demographically Driven Mixed Mating.
AbstractMany parasite species use multiple host species to complete development; however, empirical tests of models that seek to understand factors impacting evolutionary changes or maintenance of host number in parasite life cycles are scarce. Specifically, one model incorporating parasite mating systems that posits that multihost life cycles are an adaptation to prevent inbreeding in hermaphroditic parasites and thus preclude inbreeding depression remains untested. The model assumes that loss of a host results in parasite inbreeding and predicts that host loss can evolve only if there is no parasite inbreeding depression. We provide the first empirical tests of this model using a novel approach we developed for assessing inbreeding depression from field-collected parasite samples. The method compares genetically based selfing rate estimates to a demographic-based selfing rate, which was derived from the closed mating system experienced by endoparasites. Results from the hermaphroditic trematode Alloglossidium renale, which has a derived two-host life cycle, supported both the assumption and the prediction of the mating system model, as this highly inbred species had no indication of inbreeding depression. Additionally, comparisons of genetic and demographic selfing rates revealed a mixed mating system that could be explained completely by the parasite's demography (i.e., its infection intensities).
期刊介绍:
Since its inception in 1867, The American Naturalist has maintained its position as one of the world''s premier peer-reviewed publications in ecology, evolution, and behavior research. Its goals are to publish articles that are of broad interest to the readership, pose new and significant problems, introduce novel subjects, develop conceptual unification, and change the way people think. AmNat emphasizes sophisticated methodologies and innovative theoretical syntheses—all in an effort to advance the knowledge of organic evolution and other broad biological principles.