{"title":"资源流动网络结构驱动元生态系统功能","authors":"Tianna Peller, Isabelle Gounand, Florian Altermatt","doi":"10.1086/732812","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractNonliving resources frequently flow across ecosystem boundaries, which can yield networks of spatially coupled ecosystems. Yet the significance of resource flows for ecosystem function has predominantly been understood by studying two or a few coupled ecosystems, overlooking the broader resource flow network and its spatial structure. Here, we investigate how the spatial structure of larger resource flow networks influences ecosystem function at metaecosystem scales by analyzing metaecosystem models with homogeneously versus heterogeneously distributed resource flow networks but otherwise identical characteristics. We show that metaecosystem function can differ strongly between metaecosystems with contrasting resource flow networks. Differences in function generally arise through the scaling up of nonlinear local processes interacting with spatial variation in local dynamics, the latter of which is influenced by network structure. However, we find that neither network structure guarantees the greatest metaecosystem function. Rather, biotic (organism traits) and abiotic (resource flow rates) properties interact with network structure to determine which yields greater metaecosystem function. Our findings suggest that the spatial structure of resource flow networks coupling ecosystems can be a driver of ecosystem function at landscape scales. Furthermore, our study demonstrates how modifications to the structural, biotic, or abiotic properties of metaecosystem networks can have nontrivial large-scale effects on ecosystem function.</p>","PeriodicalId":50800,"journal":{"name":"American Naturalist","volume":"204 6","pages":"546-560"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resource Flow Network Structure Drives Metaecosystem Function.\",\"authors\":\"Tianna Peller, Isabelle Gounand, Florian Altermatt\",\"doi\":\"10.1086/732812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractNonliving resources frequently flow across ecosystem boundaries, which can yield networks of spatially coupled ecosystems. Yet the significance of resource flows for ecosystem function has predominantly been understood by studying two or a few coupled ecosystems, overlooking the broader resource flow network and its spatial structure. Here, we investigate how the spatial structure of larger resource flow networks influences ecosystem function at metaecosystem scales by analyzing metaecosystem models with homogeneously versus heterogeneously distributed resource flow networks but otherwise identical characteristics. We show that metaecosystem function can differ strongly between metaecosystems with contrasting resource flow networks. Differences in function generally arise through the scaling up of nonlinear local processes interacting with spatial variation in local dynamics, the latter of which is influenced by network structure. However, we find that neither network structure guarantees the greatest metaecosystem function. Rather, biotic (organism traits) and abiotic (resource flow rates) properties interact with network structure to determine which yields greater metaecosystem function. Our findings suggest that the spatial structure of resource flow networks coupling ecosystems can be a driver of ecosystem function at landscape scales. Furthermore, our study demonstrates how modifications to the structural, biotic, or abiotic properties of metaecosystem networks can have nontrivial large-scale effects on ecosystem function.</p>\",\"PeriodicalId\":50800,\"journal\":{\"name\":\"American Naturalist\",\"volume\":\"204 6\",\"pages\":\"546-560\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Naturalist\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1086/732812\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Naturalist","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1086/732812","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
AbstractNonliving resources frequently flow across ecosystem boundaries, which can yield networks of spatially coupled ecosystems. Yet the significance of resource flows for ecosystem function has predominantly been understood by studying two or a few coupled ecosystems, overlooking the broader resource flow network and its spatial structure. Here, we investigate how the spatial structure of larger resource flow networks influences ecosystem function at metaecosystem scales by analyzing metaecosystem models with homogeneously versus heterogeneously distributed resource flow networks but otherwise identical characteristics. We show that metaecosystem function can differ strongly between metaecosystems with contrasting resource flow networks. Differences in function generally arise through the scaling up of nonlinear local processes interacting with spatial variation in local dynamics, the latter of which is influenced by network structure. However, we find that neither network structure guarantees the greatest metaecosystem function. Rather, biotic (organism traits) and abiotic (resource flow rates) properties interact with network structure to determine which yields greater metaecosystem function. Our findings suggest that the spatial structure of resource flow networks coupling ecosystems can be a driver of ecosystem function at landscape scales. Furthermore, our study demonstrates how modifications to the structural, biotic, or abiotic properties of metaecosystem networks can have nontrivial large-scale effects on ecosystem function.
期刊介绍:
Since its inception in 1867, The American Naturalist has maintained its position as one of the world''s premier peer-reviewed publications in ecology, evolution, and behavior research. Its goals are to publish articles that are of broad interest to the readership, pose new and significant problems, introduce novel subjects, develop conceptual unification, and change the way people think. AmNat emphasizes sophisticated methodologies and innovative theoretical syntheses—all in an effort to advance the knowledge of organic evolution and other broad biological principles.