单核细胞增生李斯特菌的 PrfA 调节子是在低氧微嗜水条件下生长诱导的。

IF 2.6 4区 生物学 Q3 MICROBIOLOGY
Lamis A Alnakhli, Marie Goldrick, Elizabeth Lord, Ian S Roberts
{"title":"单核细胞增生李斯特菌的 PrfA 调节子是在低氧微嗜水条件下生长诱导的。","authors":"Lamis A Alnakhli, Marie Goldrick, Elizabeth Lord, Ian S Roberts","doi":"10.1099/mic.0.001516","DOIUrl":null,"url":null,"abstract":"<p><p><i>Listeria monocytogenes</i> is a food-borne pathogen that must adapt to several environments both inside and outside the host. One such environment is the microaerophilic conditions encountered in the host intestine proximal to the mucosal surface. The aim of this study was to investigate the expression of the PrfA regulon in response to microaerophilic growth conditions in the presence of either glucose or glycerol as a carbon source using four transcriptional (P<i>hly</i>, P<i>actA</i>, P<i>/prfA</i> and P<i>/plcA</i>) gene fusions. Further, RNAseq analysis was used to identify global changes in gene expression during growth in microaerophilic conditions. Following microaerophilic growth, there was a PrfA-dependent increase in transcription from the P<i>hly</i>, P<i>actA</i> and P<i>/plcA</i> promoters, indicating that microaerophilic growth induces the PrfA regulon regardless of the carbon source with increased expression of the PrfA, LLO and ActA proteins. A <i>sigB</i> mutation had no effect on the induction of the PrfA regulon under microaerophilic conditions when glucose was used as a carbon source. In contrast, when glycerol was the carbon source, a <i>sigB</i> mutation increased expression from the P<i>hly</i> and P<i>actA</i> promoters regardless of the level of oxygen. The RNAseq analysis showed that 273 genes were specifically regulated by microaerophilic conditions either up or down including the PrfA regulon virulence factors. Overall, these data indicated that <i>L. monocytogenes</i> PrfA regulon is highly responsive to the low-oxygen conditions likely to be encountered in the small intestine and that SigB has an input into the regulation of the PrfA regulon when glycerol is the sole carbon source.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575702/pdf/","citationCount":"0","resultStr":"{\"title\":\"The PrfA regulon of <i>Listeria monocytogenes</i> is induced by growth in low-oxygen microaerophilic conditions.\",\"authors\":\"Lamis A Alnakhli, Marie Goldrick, Elizabeth Lord, Ian S Roberts\",\"doi\":\"10.1099/mic.0.001516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Listeria monocytogenes</i> is a food-borne pathogen that must adapt to several environments both inside and outside the host. One such environment is the microaerophilic conditions encountered in the host intestine proximal to the mucosal surface. The aim of this study was to investigate the expression of the PrfA regulon in response to microaerophilic growth conditions in the presence of either glucose or glycerol as a carbon source using four transcriptional (P<i>hly</i>, P<i>actA</i>, P<i>/prfA</i> and P<i>/plcA</i>) gene fusions. Further, RNAseq analysis was used to identify global changes in gene expression during growth in microaerophilic conditions. Following microaerophilic growth, there was a PrfA-dependent increase in transcription from the P<i>hly</i>, P<i>actA</i> and P<i>/plcA</i> promoters, indicating that microaerophilic growth induces the PrfA regulon regardless of the carbon source with increased expression of the PrfA, LLO and ActA proteins. A <i>sigB</i> mutation had no effect on the induction of the PrfA regulon under microaerophilic conditions when glucose was used as a carbon source. In contrast, when glycerol was the carbon source, a <i>sigB</i> mutation increased expression from the P<i>hly</i> and P<i>actA</i> promoters regardless of the level of oxygen. The RNAseq analysis showed that 273 genes were specifically regulated by microaerophilic conditions either up or down including the PrfA regulon virulence factors. Overall, these data indicated that <i>L. monocytogenes</i> PrfA regulon is highly responsive to the low-oxygen conditions likely to be encountered in the small intestine and that SigB has an input into the regulation of the PrfA regulon when glycerol is the sole carbon source.</p>\",\"PeriodicalId\":49819,\"journal\":{\"name\":\"Microbiology-Sgm\",\"volume\":\"170 11\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575702/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology-Sgm\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1099/mic.0.001516\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001516","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

单核细胞增生李斯特菌是一种食源性病原体,必须适应宿主内外的多种环境。其中一种环境是宿主肠道粘膜表面近端遇到的嗜微空气条件。本研究的目的是利用四种转录(Phly、PactA、P/prfA 和 P/plcA)基因融合,研究 PrfA 调控子在以葡萄糖或甘油为碳源的微嗜水性生长条件下的表达情况。此外,还利用 RNAseq 分析确定了微嗜水性条件下生长过程中基因表达的总体变化。微嗜水性生长后,Phly、PactA 和 P/plcA 启动子的转录量增加,这表明无论碳源如何,微嗜水性生长都会诱导 PrfA 调节子,增加 PrfA、LLO 和 ActA 蛋白的表达。当使用葡萄糖作为碳源时,sigB 突变对微嗜气条件下 PrfA 调节子的诱导没有影响。相反,当以甘油为碳源时,无论氧气水平如何,sigB突变都会增加Phly和PactA启动子的表达。RNAseq 分析表明,微嗜氧条件对 273 个基因进行了特异性的上调或下调,其中包括 PrfA 调控子毒力因子。总之,这些数据表明,单核细胞增生性酵母菌的 PrfA 调节子对小肠中可能遇到的低氧条件具有高度响应性,而且当甘油是唯一碳源时,SigB 对 PrfA 调节子的调控具有输入作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The PrfA regulon of Listeria monocytogenes is induced by growth in low-oxygen microaerophilic conditions.

Listeria monocytogenes is a food-borne pathogen that must adapt to several environments both inside and outside the host. One such environment is the microaerophilic conditions encountered in the host intestine proximal to the mucosal surface. The aim of this study was to investigate the expression of the PrfA regulon in response to microaerophilic growth conditions in the presence of either glucose or glycerol as a carbon source using four transcriptional (Phly, PactA, P/prfA and P/plcA) gene fusions. Further, RNAseq analysis was used to identify global changes in gene expression during growth in microaerophilic conditions. Following microaerophilic growth, there was a PrfA-dependent increase in transcription from the Phly, PactA and P/plcA promoters, indicating that microaerophilic growth induces the PrfA regulon regardless of the carbon source with increased expression of the PrfA, LLO and ActA proteins. A sigB mutation had no effect on the induction of the PrfA regulon under microaerophilic conditions when glucose was used as a carbon source. In contrast, when glycerol was the carbon source, a sigB mutation increased expression from the Phly and PactA promoters regardless of the level of oxygen. The RNAseq analysis showed that 273 genes were specifically regulated by microaerophilic conditions either up or down including the PrfA regulon virulence factors. Overall, these data indicated that L. monocytogenes PrfA regulon is highly responsive to the low-oxygen conditions likely to be encountered in the small intestine and that SigB has an input into the regulation of the PrfA regulon when glycerol is the sole carbon source.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbiology-Sgm
Microbiology-Sgm 生物-微生物学
CiteScore
4.60
自引率
7.10%
发文量
132
审稿时长
3.0 months
期刊介绍: We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms. Topics include but are not limited to: Antimicrobials and antimicrobial resistance Bacteriology and parasitology Biochemistry and biophysics Biofilms and biological systems Biotechnology and bioremediation Cell biology and signalling Chemical biology Cross-disciplinary work Ecology and environmental microbiology Food microbiology Genetics Host–microbe interactions Microbial methods and techniques Microscopy and imaging Omics, including genomics, proteomics and metabolomics Physiology and metabolism Systems biology and synthetic biology The microbiome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信