不同惯性测量单元传感器对分段校准对临床三维肱胸关节角度估算的影响

IF 1.1 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Alessandro Bonfiglio, Elisabetta Farella, David Tacconi, Raoul M Bongers
{"title":"不同惯性测量单元传感器对分段校准对临床三维肱胸关节角度估算的影响","authors":"Alessandro Bonfiglio, Elisabetta Farella, David Tacconi, Raoul M Bongers","doi":"10.1123/jab.2023-0276","DOIUrl":null,"url":null,"abstract":"<p><p>Calibrating inertial measurement units (IMUs) involves converting orientation data from a local reference frame into a clinically meaningful reference system. Several solutions exist but little work has been done to compare different calibration methods with each other and an optical motion capture system. Thirteen healthy subjects with no signs of upper limb injury were recruited for this study and instrumented with IMU sensors and optical markers. Three IMU calibration methods were compared: N-pose calibration, functional calibration, and manual alignment. Subjects executed simple single-plane single-joint tasks for each upper limb joint as well as more complex multijoint tasks. We performed a 3-way analysis of variance on range of motion error, root mean squared error, and offset to assess differences between calibrations, tasks, and anatomical axes. Differences in the 3 IMU calibrations are minor and not statistically significant for most tasks and anatomical axes, with the exception of the offset interaction calibration × axes (P < .001, ηG2=.056). Specifically, manual alignment gives the best offset estimation on the abduction/adduction and internal/external rotation axes. Therefore, we recommend the use of a static N-pose calibration procedure as the preferred IMU calibration method to model the humerothoracic joint, as this setup is the simplest as it only requires accurate positioning of the trunk sensor.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":" ","pages":"1-10"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Different Inertial Measurement Unit Sensor-to-Segment Calibrations on Clinical 3-Dimensional Humerothoracic Joint Angles Estimation.\",\"authors\":\"Alessandro Bonfiglio, Elisabetta Farella, David Tacconi, Raoul M Bongers\",\"doi\":\"10.1123/jab.2023-0276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Calibrating inertial measurement units (IMUs) involves converting orientation data from a local reference frame into a clinically meaningful reference system. Several solutions exist but little work has been done to compare different calibration methods with each other and an optical motion capture system. Thirteen healthy subjects with no signs of upper limb injury were recruited for this study and instrumented with IMU sensors and optical markers. Three IMU calibration methods were compared: N-pose calibration, functional calibration, and manual alignment. Subjects executed simple single-plane single-joint tasks for each upper limb joint as well as more complex multijoint tasks. We performed a 3-way analysis of variance on range of motion error, root mean squared error, and offset to assess differences between calibrations, tasks, and anatomical axes. Differences in the 3 IMU calibrations are minor and not statistically significant for most tasks and anatomical axes, with the exception of the offset interaction calibration × axes (P < .001, ηG2=.056). Specifically, manual alignment gives the best offset estimation on the abduction/adduction and internal/external rotation axes. Therefore, we recommend the use of a static N-pose calibration procedure as the preferred IMU calibration method to model the humerothoracic joint, as this setup is the simplest as it only requires accurate positioning of the trunk sensor.</p>\",\"PeriodicalId\":54883,\"journal\":{\"name\":\"Journal of Applied Biomechanics\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1123/jab.2023-0276\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1123/jab.2023-0276","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

惯性测量单元(IMU)的校准涉及将方位数据从本地参考框架转换为临床意义上的参考系统。目前有几种解决方案,但很少有人将不同的校准方法与光学运动捕捉系统进行比较。这项研究招募了 13 名上肢没有受伤迹象的健康受试者,并在他们身上安装了 IMU 传感器和光学标记。对三种 IMU 校准方法进行了比较:N姿势校准、功能校准和手动校准。受试者对每个上肢关节执行简单的单平面单关节任务以及更复杂的多关节任务。我们对运动范围误差、均方根误差和偏移量进行了3方差分析,以评估校准、任务和解剖轴之间的差异。在大多数任务和解剖轴上,3种IMU校准的差异较小,没有统计学意义,但偏移交互校准×轴(P < .001,ηG2=.056)除外。具体来说,手动校准在外展/内收和内旋/外旋轴上给出了最佳偏移量估计。因此,我们建议使用静态 N 姿态校准程序作为建立肱胸关节模型的首选 IMU 校准方法,因为这种设置最简单,只需要准确定位躯干传感器即可。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Different Inertial Measurement Unit Sensor-to-Segment Calibrations on Clinical 3-Dimensional Humerothoracic Joint Angles Estimation.

Calibrating inertial measurement units (IMUs) involves converting orientation data from a local reference frame into a clinically meaningful reference system. Several solutions exist but little work has been done to compare different calibration methods with each other and an optical motion capture system. Thirteen healthy subjects with no signs of upper limb injury were recruited for this study and instrumented with IMU sensors and optical markers. Three IMU calibration methods were compared: N-pose calibration, functional calibration, and manual alignment. Subjects executed simple single-plane single-joint tasks for each upper limb joint as well as more complex multijoint tasks. We performed a 3-way analysis of variance on range of motion error, root mean squared error, and offset to assess differences between calibrations, tasks, and anatomical axes. Differences in the 3 IMU calibrations are minor and not statistically significant for most tasks and anatomical axes, with the exception of the offset interaction calibration × axes (P < .001, ηG2=.056). Specifically, manual alignment gives the best offset estimation on the abduction/adduction and internal/external rotation axes. Therefore, we recommend the use of a static N-pose calibration procedure as the preferred IMU calibration method to model the humerothoracic joint, as this setup is the simplest as it only requires accurate positioning of the trunk sensor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Biomechanics
Journal of Applied Biomechanics 医学-工程:生物医学
CiteScore
2.00
自引率
0.00%
发文量
47
审稿时长
6-12 weeks
期刊介绍: The mission of the Journal of Applied Biomechanics (JAB) is to disseminate the highest quality peer-reviewed studies that utilize biomechanical strategies to advance the study of human movement. Areas of interest include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that explicitly generalize to broader activities, contribute substantially to fundamental understanding of human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of JAB are studies using biomechanical strategies to investigate the structure, control, function, and state (health and disease) of animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信