解密WOX5在根干细胞组织器中功能的分子逻辑

IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
EMBO Journal Pub Date : 2025-01-01 Epub Date: 2024-11-18 DOI:10.1038/s44318-024-00302-2
Ning Zhang, Pamela Bitterli, Peter Oluoch, Marita Hermann, Ernst Aichinger, Edwin P Groot, Thomas Laux
{"title":"解密WOX5在根干细胞组织器中功能的分子逻辑","authors":"Ning Zhang, Pamela Bitterli, Peter Oluoch, Marita Hermann, Ernst Aichinger, Edwin P Groot, Thomas Laux","doi":"10.1038/s44318-024-00302-2","DOIUrl":null,"url":null,"abstract":"<p><p>Plant and animal stem cells receive signals from their surrounding cells to stay undifferentiated. In the Arabidopsis root, the quiescent center (QC) acts as a stem cell organizer, signaling to the neighboring stem cells. WOX5 is a central transcription factor regulating QC function. However, due to the scarcity of QC cells, WOX5 functions in the QC are largely unexplored at a genomic scale. Here, we unveil the transcriptional and epigenetic landscapes of the QC and the role of WOX5 within them. We find that WOX5 functions both as a transcriptional repressor and activator, affecting histone modifications and chromatin accessibility. Our data expand on known WOX5 functions, such as the regulation of differentiation, cell division, and auxin biosynthesis. We also uncover unexpected WOX5-regulated pathways involved in nitrate transport and the regulation of basal expression levels of genes associated with mature root tissues. These data suggest a role for QC cells as reserve stem cells and primed cells for prospective progenitor fates. Taken together, these findings offer insights into the role of WOX5 at the QC and provide a basis for further analyses to advance our understanding of the nature of plant stem cell organizers.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"281-303"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696986/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deciphering the molecular logic of WOX5 function in the root stem cell organizer.\",\"authors\":\"Ning Zhang, Pamela Bitterli, Peter Oluoch, Marita Hermann, Ernst Aichinger, Edwin P Groot, Thomas Laux\",\"doi\":\"10.1038/s44318-024-00302-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant and animal stem cells receive signals from their surrounding cells to stay undifferentiated. In the Arabidopsis root, the quiescent center (QC) acts as a stem cell organizer, signaling to the neighboring stem cells. WOX5 is a central transcription factor regulating QC function. However, due to the scarcity of QC cells, WOX5 functions in the QC are largely unexplored at a genomic scale. Here, we unveil the transcriptional and epigenetic landscapes of the QC and the role of WOX5 within them. We find that WOX5 functions both as a transcriptional repressor and activator, affecting histone modifications and chromatin accessibility. Our data expand on known WOX5 functions, such as the regulation of differentiation, cell division, and auxin biosynthesis. We also uncover unexpected WOX5-regulated pathways involved in nitrate transport and the regulation of basal expression levels of genes associated with mature root tissues. These data suggest a role for QC cells as reserve stem cells and primed cells for prospective progenitor fates. Taken together, these findings offer insights into the role of WOX5 at the QC and provide a basis for further analyses to advance our understanding of the nature of plant stem cell organizers.</p>\",\"PeriodicalId\":50533,\"journal\":{\"name\":\"EMBO Journal\",\"volume\":\" \",\"pages\":\"281-303\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696986/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44318-024-00302-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-024-00302-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

植物和动物干细胞接收周围细胞发出的信号,以保持未分化状态。在拟南芥根中,静止中心(QC)充当干细胞组织者,向邻近干细胞发出信号。WOX5是调节QC功能的核心转录因子。然而,由于QC细胞的稀缺性,WOX5在QC中的功能在基因组尺度上基本未被探索。在这里,我们揭示了 QC 的转录和表观遗传景观以及 WOX5 在其中的作用。我们发现,WOX5 既是转录抑制因子,也是激活因子,影响组蛋白修饰和染色质的可及性。我们的数据扩展了已知的 WOX5 功能,如调节分化、细胞分裂和辅助素生物合成。我们还发现了意想不到的 WOX5 调控途径,这些途径涉及硝酸盐转运以及与成熟根组织相关的基因的基础表达水平调控。这些数据表明了 QC 细胞作为储备干细胞和未来祖细胞命运的预备细胞的作用。总之,这些发现让我们深入了解了WOX5在QC中的作用,并为进一步分析提供了基础,从而加深了我们对植物干细胞组织者性质的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deciphering the molecular logic of WOX5 function in the root stem cell organizer.

Plant and animal stem cells receive signals from their surrounding cells to stay undifferentiated. In the Arabidopsis root, the quiescent center (QC) acts as a stem cell organizer, signaling to the neighboring stem cells. WOX5 is a central transcription factor regulating QC function. However, due to the scarcity of QC cells, WOX5 functions in the QC are largely unexplored at a genomic scale. Here, we unveil the transcriptional and epigenetic landscapes of the QC and the role of WOX5 within them. We find that WOX5 functions both as a transcriptional repressor and activator, affecting histone modifications and chromatin accessibility. Our data expand on known WOX5 functions, such as the regulation of differentiation, cell division, and auxin biosynthesis. We also uncover unexpected WOX5-regulated pathways involved in nitrate transport and the regulation of basal expression levels of genes associated with mature root tissues. These data suggest a role for QC cells as reserve stem cells and primed cells for prospective progenitor fates. Taken together, these findings offer insights into the role of WOX5 at the QC and provide a basis for further analyses to advance our understanding of the nature of plant stem cell organizers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EMBO Journal
EMBO Journal 生物-生化与分子生物学
CiteScore
18.90
自引率
0.90%
发文量
246
审稿时长
1.5 months
期刊介绍: The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance. With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信