地衣芽孢杆菌 UDS-5 产生的新型钙依赖性恒温 α 淀粉酶的优化和纯化。

IF 4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Sadikhusain Suthar, Disha Joshi, Harsh Patel, Darshan Patel, Bhavtosh A Kikani
{"title":"地衣芽孢杆菌 UDS-5 产生的新型钙依赖性恒温 α 淀粉酶的优化和纯化。","authors":"Sadikhusain Suthar, Disha Joshi, Harsh Patel, Darshan Patel, Bhavtosh A Kikani","doi":"10.1007/s11274-024-04188-4","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial amylases should essentially remain active at higher temperatures, and in the alkaline pH and a range of surfactants to be suitable as detergent additives. In the present study, a thermophilic amylase producing bacterium, Bacillus licheniformis UDS-5 was isolated from Unai hot water spring in Gujarat, India. It was identified as a potent amylase producer during starch plate-based screening process. Therefore, the physicochemical parameters influencing amylase production were optimized using Plackett-Burman design and Central Composite Design. The amylase was purified through ammonium sulfate precipitation, size exclusion and ion exchange chromatography, achieving the purification fold and yield to be 9.2 and 40.6%, respectively. The enzyme displayed robust stability and activity across a wide range of temperatures and pHs, with an increased half-life and reduced deactivation rate constant. The amylase exhibited optimal catalysis at 70 °C and pH 8. The kinetic studies revealed Km and Vmax values of 0.58 mg/mL and 2528 μmol/mL/min, respectively. Besides, the purified amylase displayed stability in the presence of various metal ions, surfactants, and chelators suggesting its potential for industrial applications, particularly in the detergent industry. Moreover, detergent application studies demonstrated its efficacy in enhancing washing performance. A comparative profile on washing efficiency of the studied amylase and the commercial amylase with various detergents pointed towards its possible future use as a detergent additive.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 12","pages":"385"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization and purification of a novel calcium-independent thermostable, α-amylase produced by Bacillus licheniformis UDS-5.\",\"authors\":\"Sadikhusain Suthar, Disha Joshi, Harsh Patel, Darshan Patel, Bhavtosh A Kikani\",\"doi\":\"10.1007/s11274-024-04188-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial amylases should essentially remain active at higher temperatures, and in the alkaline pH and a range of surfactants to be suitable as detergent additives. In the present study, a thermophilic amylase producing bacterium, Bacillus licheniformis UDS-5 was isolated from Unai hot water spring in Gujarat, India. It was identified as a potent amylase producer during starch plate-based screening process. Therefore, the physicochemical parameters influencing amylase production were optimized using Plackett-Burman design and Central Composite Design. The amylase was purified through ammonium sulfate precipitation, size exclusion and ion exchange chromatography, achieving the purification fold and yield to be 9.2 and 40.6%, respectively. The enzyme displayed robust stability and activity across a wide range of temperatures and pHs, with an increased half-life and reduced deactivation rate constant. The amylase exhibited optimal catalysis at 70 °C and pH 8. The kinetic studies revealed Km and Vmax values of 0.58 mg/mL and 2528 μmol/mL/min, respectively. Besides, the purified amylase displayed stability in the presence of various metal ions, surfactants, and chelators suggesting its potential for industrial applications, particularly in the detergent industry. Moreover, detergent application studies demonstrated its efficacy in enhancing washing performance. A comparative profile on washing efficiency of the studied amylase and the commercial amylase with various detergents pointed towards its possible future use as a detergent additive.</p>\",\"PeriodicalId\":23703,\"journal\":{\"name\":\"World journal of microbiology & biotechnology\",\"volume\":\"40 12\",\"pages\":\"385\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of microbiology & biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11274-024-04188-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04188-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微生物淀粉酶基本上应在较高温度、碱性 pH 值和一定范围的表面活性剂中保持活性,以适合用作洗涤剂添加剂。在本研究中,从印度古吉拉特邦的乌奈温泉中分离出了一种嗜热淀粉酶生产菌--地衣芽孢杆菌 UDS-5。在基于淀粉板的筛选过程中,它被确定为一种强效的淀粉酶生产者。因此,采用普拉克特-伯曼设计和中央复合设计对影响淀粉酶生产的理化参数进行了优化。通过硫酸铵沉淀、尺寸排阻和离子交换色谱法纯化了淀粉酶,纯化倍数和产率分别为 9.2% 和 40.6%。该酶在很宽的温度和 pH 范围内都表现出很强的稳定性和活性,半衰期延长,失活速率常数降低。动力学研究显示,淀粉酶的 Km 和 Vmax 值分别为 0.58 mg/mL 和 2528 μmol/mL/min。此外,纯化的淀粉酶在各种金属离子、表面活性剂和螯合剂的存在下都表现出稳定性,这表明它具有工业应用潜力,尤其是在洗涤剂行业。此外,洗涤剂应用研究也证明了它在提高洗涤性能方面的功效。对所研究的淀粉酶和商用淀粉酶与各种洗涤剂的洗涤效率进行的比较分析表明,淀粉酶将来可能用作洗涤剂添加剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization and purification of a novel calcium-independent thermostable, α-amylase produced by Bacillus licheniformis UDS-5.

Microbial amylases should essentially remain active at higher temperatures, and in the alkaline pH and a range of surfactants to be suitable as detergent additives. In the present study, a thermophilic amylase producing bacterium, Bacillus licheniformis UDS-5 was isolated from Unai hot water spring in Gujarat, India. It was identified as a potent amylase producer during starch plate-based screening process. Therefore, the physicochemical parameters influencing amylase production were optimized using Plackett-Burman design and Central Composite Design. The amylase was purified through ammonium sulfate precipitation, size exclusion and ion exchange chromatography, achieving the purification fold and yield to be 9.2 and 40.6%, respectively. The enzyme displayed robust stability and activity across a wide range of temperatures and pHs, with an increased half-life and reduced deactivation rate constant. The amylase exhibited optimal catalysis at 70 °C and pH 8. The kinetic studies revealed Km and Vmax values of 0.58 mg/mL and 2528 μmol/mL/min, respectively. Besides, the purified amylase displayed stability in the presence of various metal ions, surfactants, and chelators suggesting its potential for industrial applications, particularly in the detergent industry. Moreover, detergent application studies demonstrated its efficacy in enhancing washing performance. A comparative profile on washing efficiency of the studied amylase and the commercial amylase with various detergents pointed towards its possible future use as a detergent additive.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World journal of microbiology & biotechnology
World journal of microbiology & biotechnology 工程技术-生物工程与应用微生物
CiteScore
6.30
自引率
2.40%
发文量
257
审稿时长
2.5 months
期刊介绍: World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology. Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions. Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories: · Virology · Simple isolation of microbes from local sources · Simple descriptions of an environment or reports on a procedure · Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism · Data reporting on host response to microbes · Optimization of a procedure · Description of the biological effects of not fully identified compounds or undefined extracts of natural origin · Data on not fully purified enzymes or procedures in which they are applied All articles published in the Journal are independently refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信