Nicole L O'Brien, Frank Seglenieks, Lauren M Fry, Deanna Fielder, André G T Temgoua, Jacob Bruxer, Vincent Fortin, Dorothy Durnford, Andrew D Gronewold
{"title":"劳伦伦五大湖每月水平衡组成部分的历史数据集(1950-2022 年)。","authors":"Nicole L O'Brien, Frank Seglenieks, Lauren M Fry, Deanna Fielder, André G T Temgoua, Jacob Bruxer, Vincent Fortin, Dorothy Durnford, Andrew D Gronewold","doi":"10.1038/s41597-024-03994-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study develops a 73-year dataset of water balance components from 1950 to 2022 for the Laurentian Great Lakes Basins. This is carried out using the Large Lakes Statistical Water Balance Model (L2SWBM), which provides a Bayesian statistical framework that assimilates binational input datasets sourced from the United States and Canada. The L2SWBM infers feasible water balance component estimates through this Bayesian framework by constraining the output with a standard water balance equation. The result is value-added time series, including expressions of uncertainty, that ultimately close the water balance across the interconnected Great Lakes system. Therefore, the L2SWBM facilitates the understanding of discrepancies in datasets and hydroclimate parameters. This enhanced reliability stemming from coordinated data, with an understanding and quantification of uncertainty, could significantly boost confidence in decision support tools for water resources practitioners and policymakers. This joint effort advances scientific understanding and strengthens strategies and policies designed to bolster resilience in Great Lakes communities and its ecosystem in the face of a shifting climate.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1243"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Historical datasets (1950-2022) of monthly water balance components for the Laurentian Great Lakes.\",\"authors\":\"Nicole L O'Brien, Frank Seglenieks, Lauren M Fry, Deanna Fielder, André G T Temgoua, Jacob Bruxer, Vincent Fortin, Dorothy Durnford, Andrew D Gronewold\",\"doi\":\"10.1038/s41597-024-03994-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study develops a 73-year dataset of water balance components from 1950 to 2022 for the Laurentian Great Lakes Basins. This is carried out using the Large Lakes Statistical Water Balance Model (L2SWBM), which provides a Bayesian statistical framework that assimilates binational input datasets sourced from the United States and Canada. The L2SWBM infers feasible water balance component estimates through this Bayesian framework by constraining the output with a standard water balance equation. The result is value-added time series, including expressions of uncertainty, that ultimately close the water balance across the interconnected Great Lakes system. Therefore, the L2SWBM facilitates the understanding of discrepancies in datasets and hydroclimate parameters. This enhanced reliability stemming from coordinated data, with an understanding and quantification of uncertainty, could significantly boost confidence in decision support tools for water resources practitioners and policymakers. This joint effort advances scientific understanding and strengthens strategies and policies designed to bolster resilience in Great Lakes communities and its ecosystem in the face of a shifting climate.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"11 1\",\"pages\":\"1243\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-024-03994-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-03994-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Historical datasets (1950-2022) of monthly water balance components for the Laurentian Great Lakes.
This study develops a 73-year dataset of water balance components from 1950 to 2022 for the Laurentian Great Lakes Basins. This is carried out using the Large Lakes Statistical Water Balance Model (L2SWBM), which provides a Bayesian statistical framework that assimilates binational input datasets sourced from the United States and Canada. The L2SWBM infers feasible water balance component estimates through this Bayesian framework by constraining the output with a standard water balance equation. The result is value-added time series, including expressions of uncertainty, that ultimately close the water balance across the interconnected Great Lakes system. Therefore, the L2SWBM facilitates the understanding of discrepancies in datasets and hydroclimate parameters. This enhanced reliability stemming from coordinated data, with an understanding and quantification of uncertainty, could significantly boost confidence in decision support tools for water resources practitioners and policymakers. This joint effort advances scientific understanding and strengthens strategies and policies designed to bolster resilience in Great Lakes communities and its ecosystem in the face of a shifting climate.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.