Chunmei Ma, Shiyao Wang, Chenguang Gao, Junjie Wang
{"title":"源自过渡金属硼化物 M3B4(M = Cr、Mn 和 Fe)的二维本征磁体的理论研究。","authors":"Chunmei Ma, Shiyao Wang, Chenguang Gao, Junjie Wang","doi":"10.1080/14686996.2024.2404384","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional (2D) magnetic materials with high critical temperatures (<i>T</i> <sub><i>C</i></sub> ) and robust magnetic anisotropy energies (MAE) hold significant potential for spintronic applications. However, most of 2D magnetic materials are derived from the van der Waals (vdW) layered bulks, which greatly limits the synthesis of 2D magnetic materials. Here, 2D M<sub>3</sub>B<sub>4</sub> (M = Cr, Mn, and Fe; B = Boron), derived from hexagonal and orthorhombic M<sub>3</sub>AlB<sub>4</sub> phases by selectively etching Al layers, was studied for its structural stability, electronic structure, and magnetic properties. By utilizing <i>ab initio</i> calculations and Monte Carlo simulations, we found that the orthorhombic Cr<sub>3</sub>B<sub>4</sub> shows ferromagnetic (FM) metal and possesses an in-plane magnetic easy axis, while the remaining hexagonal and orthorhombic M<sub>3</sub>B<sub>4</sub> structures exhibit antiferromagnetic (AFM) metals with a magnetic easy axis which is perpendicular to the two-dimensional plane. The critical temperatures of these 2D M<sub>3</sub>B<sub>4</sub> structures are found to be above the 130 K. Notably, the ort-Mn<sub>3</sub>B<sub>4</sub> possesses highest <i>T</i> <sub><i>C</i></sub> (~600 K) and strongest MAE (~220 µeV/atom) among these borides-based 2D magnetic materials. Our findings reveal that the 2D M<sub>3</sub>B<sub>4</sub> compounds exhibit much better resistance to deformation compared to M<sub>2</sub>B<sub>2</sub> MBenes and other 2D magnetic materials. The combination of high critical temperature, robust MAE, and excellent mechanical properties makes 2D Mn<sub>3</sub>B<sub>4</sub> monolayer exhibits a favorable potential for spintronic applications. Our research also sheds light on the magnetic coupling mechanism of 2D M<sub>3</sub>B<sub>4</sub>, providing valuable insights into its fundamental characteristics.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"25 1","pages":"2404384"},"PeriodicalIF":7.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573340/pdf/","citationCount":"0","resultStr":"{\"title\":\"Theoretical investigations of two-dimensional intrinsic magnets derived from transition-metal borides M<sub>3</sub>B<sub>4</sub> (M = Cr, Mn, and Fe).\",\"authors\":\"Chunmei Ma, Shiyao Wang, Chenguang Gao, Junjie Wang\",\"doi\":\"10.1080/14686996.2024.2404384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-dimensional (2D) magnetic materials with high critical temperatures (<i>T</i> <sub><i>C</i></sub> ) and robust magnetic anisotropy energies (MAE) hold significant potential for spintronic applications. However, most of 2D magnetic materials are derived from the van der Waals (vdW) layered bulks, which greatly limits the synthesis of 2D magnetic materials. Here, 2D M<sub>3</sub>B<sub>4</sub> (M = Cr, Mn, and Fe; B = Boron), derived from hexagonal and orthorhombic M<sub>3</sub>AlB<sub>4</sub> phases by selectively etching Al layers, was studied for its structural stability, electronic structure, and magnetic properties. By utilizing <i>ab initio</i> calculations and Monte Carlo simulations, we found that the orthorhombic Cr<sub>3</sub>B<sub>4</sub> shows ferromagnetic (FM) metal and possesses an in-plane magnetic easy axis, while the remaining hexagonal and orthorhombic M<sub>3</sub>B<sub>4</sub> structures exhibit antiferromagnetic (AFM) metals with a magnetic easy axis which is perpendicular to the two-dimensional plane. The critical temperatures of these 2D M<sub>3</sub>B<sub>4</sub> structures are found to be above the 130 K. Notably, the ort-Mn<sub>3</sub>B<sub>4</sub> possesses highest <i>T</i> <sub><i>C</i></sub> (~600 K) and strongest MAE (~220 µeV/atom) among these borides-based 2D magnetic materials. Our findings reveal that the 2D M<sub>3</sub>B<sub>4</sub> compounds exhibit much better resistance to deformation compared to M<sub>2</sub>B<sub>2</sub> MBenes and other 2D magnetic materials. The combination of high critical temperature, robust MAE, and excellent mechanical properties makes 2D Mn<sub>3</sub>B<sub>4</sub> monolayer exhibits a favorable potential for spintronic applications. Our research also sheds light on the magnetic coupling mechanism of 2D M<sub>3</sub>B<sub>4</sub>, providing valuable insights into its fundamental characteristics.</p>\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"25 1\",\"pages\":\"2404384\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573340/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2024.2404384\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2404384","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
二维(2D)磁性材料具有较高的临界温度(T C)和强大的磁各向异性能(MAE),在自旋电子应用方面具有巨大潜力。然而,大多数二维磁性材料都来自范德华(vdW)层状体,这极大地限制了二维磁性材料的合成。本文研究了二维 M3B4(M = 铬、锰和铁;B = 硼),它是通过选择性蚀刻铝层从六方和正交 M3AlB4 相中衍生出来的,研究了它的结构稳定性、电子结构和磁性能。通过利用 ab initio 计算和蒙特卡罗模拟,我们发现正方体 Cr3B4 显示出铁磁性(FM)金属,并具有平面内的磁易轴,而其余六方和正方体 M3B4 结构则显示出反铁磁性(AFM)金属,其磁易轴垂直于二维平面。值得注意的是,在这些硼化物基二维磁性材料中,ort-Mn3B4 具有最高的 T C(约 600 K)和最强的 MAE(约 220 µeV/原子)。我们的研究结果表明,与 M2B2 MBenes 和其他二维磁性材料相比,二维 M3B4 化合物具有更好的抗变形能力。二维 Mn3B4 单层材料兼具高临界温度、稳健的 MAE 和优异的机械性能,因此具有自旋电子应用的良好潜力。我们的研究还揭示了二维 Mn3B4 的磁耦合机制,为了解其基本特性提供了宝贵的见解。
Theoretical investigations of two-dimensional intrinsic magnets derived from transition-metal borides M3B4 (M = Cr, Mn, and Fe).
Two-dimensional (2D) magnetic materials with high critical temperatures (TC ) and robust magnetic anisotropy energies (MAE) hold significant potential for spintronic applications. However, most of 2D magnetic materials are derived from the van der Waals (vdW) layered bulks, which greatly limits the synthesis of 2D magnetic materials. Here, 2D M3B4 (M = Cr, Mn, and Fe; B = Boron), derived from hexagonal and orthorhombic M3AlB4 phases by selectively etching Al layers, was studied for its structural stability, electronic structure, and magnetic properties. By utilizing ab initio calculations and Monte Carlo simulations, we found that the orthorhombic Cr3B4 shows ferromagnetic (FM) metal and possesses an in-plane magnetic easy axis, while the remaining hexagonal and orthorhombic M3B4 structures exhibit antiferromagnetic (AFM) metals with a magnetic easy axis which is perpendicular to the two-dimensional plane. The critical temperatures of these 2D M3B4 structures are found to be above the 130 K. Notably, the ort-Mn3B4 possesses highest TC (~600 K) and strongest MAE (~220 µeV/atom) among these borides-based 2D magnetic materials. Our findings reveal that the 2D M3B4 compounds exhibit much better resistance to deformation compared to M2B2 MBenes and other 2D magnetic materials. The combination of high critical temperature, robust MAE, and excellent mechanical properties makes 2D Mn3B4 monolayer exhibits a favorable potential for spintronic applications. Our research also sheds light on the magnetic coupling mechanism of 2D M3B4, providing valuable insights into its fundamental characteristics.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.