{"title":"基于小波和局部二进制模式的特征描述器,用于通过胸部 X 光图像检测慢性感染。","authors":"Amar Kumar Verma, Prerna Saurabh, Deep Madhukant Shah, Vamsi Inturi, Radhika Sudha, Sabareesh Geetha Rajasekharan, Rajkumar Soundrapandiyan","doi":"10.1177/09544119241293007","DOIUrl":null,"url":null,"abstract":"<p><p>This investigation attempts to propose a novel Wavelet and Local Binary Pattern-based Xception feature Descriptor (WLBPXD) framework, which uses a deep-learning model for classifying chronic infection amongst other infections. Chronic infection (COVID-19 in this study) is identified via RT-PCR test, which is time-consuming and requires a dedicated laboratory (materials, equipment, etc.) to complete the clinical results. X-rays and computed tomography images from chest scans offer an alternative method for identifying chronic infections. It has been demonstrated that chronic infection can be diagnosed from X-ray images acquired in a real-world setting. The images are transformed using the discrete wavelet transform (DWT), combined with the local binary pattern (LBP) technique. Pre-trained deep-learning models, such as AlexNet, Xception, VGG-16 and Inception Resnet50, extract the features. Subsequently, the extracted features are fused using feature-fusion approaches and subjected to classification. The AlexNet, in conjunction with the DWT model, produced 99.7% accurate results, whereas the AlexNet and the LBP model produced 99.6% accurate results. Therefore, the proposed method is efficient as it offers a better detection accuracy and eventually enhances the scope of early detection, thus assisting the clinical perspectives.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"1133-1145"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A wavelet and local binary pattern-based feature descriptor for the detection of chronic infection through thoracic X-ray images.\",\"authors\":\"Amar Kumar Verma, Prerna Saurabh, Deep Madhukant Shah, Vamsi Inturi, Radhika Sudha, Sabareesh Geetha Rajasekharan, Rajkumar Soundrapandiyan\",\"doi\":\"10.1177/09544119241293007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This investigation attempts to propose a novel Wavelet and Local Binary Pattern-based Xception feature Descriptor (WLBPXD) framework, which uses a deep-learning model for classifying chronic infection amongst other infections. Chronic infection (COVID-19 in this study) is identified via RT-PCR test, which is time-consuming and requires a dedicated laboratory (materials, equipment, etc.) to complete the clinical results. X-rays and computed tomography images from chest scans offer an alternative method for identifying chronic infections. It has been demonstrated that chronic infection can be diagnosed from X-ray images acquired in a real-world setting. The images are transformed using the discrete wavelet transform (DWT), combined with the local binary pattern (LBP) technique. Pre-trained deep-learning models, such as AlexNet, Xception, VGG-16 and Inception Resnet50, extract the features. Subsequently, the extracted features are fused using feature-fusion approaches and subjected to classification. The AlexNet, in conjunction with the DWT model, produced 99.7% accurate results, whereas the AlexNet and the LBP model produced 99.6% accurate results. Therefore, the proposed method is efficient as it offers a better detection accuracy and eventually enhances the scope of early detection, thus assisting the clinical perspectives.</p>\",\"PeriodicalId\":20666,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"volume\":\" \",\"pages\":\"1133-1145\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544119241293007\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119241293007","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A wavelet and local binary pattern-based feature descriptor for the detection of chronic infection through thoracic X-ray images.
This investigation attempts to propose a novel Wavelet and Local Binary Pattern-based Xception feature Descriptor (WLBPXD) framework, which uses a deep-learning model for classifying chronic infection amongst other infections. Chronic infection (COVID-19 in this study) is identified via RT-PCR test, which is time-consuming and requires a dedicated laboratory (materials, equipment, etc.) to complete the clinical results. X-rays and computed tomography images from chest scans offer an alternative method for identifying chronic infections. It has been demonstrated that chronic infection can be diagnosed from X-ray images acquired in a real-world setting. The images are transformed using the discrete wavelet transform (DWT), combined with the local binary pattern (LBP) technique. Pre-trained deep-learning models, such as AlexNet, Xception, VGG-16 and Inception Resnet50, extract the features. Subsequently, the extracted features are fused using feature-fusion approaches and subjected to classification. The AlexNet, in conjunction with the DWT model, produced 99.7% accurate results, whereas the AlexNet and the LBP model produced 99.6% accurate results. Therefore, the proposed method is efficient as it offers a better detection accuracy and eventually enhances the scope of early detection, thus assisting the clinical perspectives.
期刊介绍:
The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.