{"title":"大黄素通过调节 K27 链接的多泛素化抑制 AIM2 炎症小体的激活以减轻肾脏纤维化。","authors":"Lidan Lu, Ruonan Shuang, Fang Cao, Zhongwen Sun, Qingxue Wei, Tiantian Gao, Xuejing Gu, Kejian Wen, Xiaolan Cheng, Mingjia Gu","doi":"10.1002/ptr.8390","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic kidney diseases (CKD) is a serious threat to people's health with renal fibrosis as the major pathological feature. The absent in melanoma 2 (AIM2) has recently been proposed to play a critical role in CKD. Emodin is a major bioactive compound from rhubarb, which is widely used for clinical treatment of renal disease. The aim of this study is to elucidate the effect of emodin on unilateral ureteral obstruction (UUO) model mice and its association with the AIM2 inflammasome. In this study, we established the UUO-induced mice renal interstitial fibrosis in vivo and bone marrow-derived macrophages (BMDMs) model in vitro. The BUN, SCr, TNF-α, IL-1β in serum were examined. The degree of renal damage and fibrosis were determined by histological assessment. Immunofluorescence, western blot, and Co-IP were used to determine the mechanisms of emodin against CKD. Emodin could improve UUO-induced abnormal renal function and histopathological abnormalities. It could also ameliorate renal fibrosis, evidenced by inhibiting the expression of α-SMA, TGF-β1, FN, and collagen I. Mechanistically, emodin significantly suppressed AIM2 inflammasome as well as its components including ASC, cleaved caspase-1, and IL-1β both in vivo and in vitro. Further studies demonstrated that emodin inhibited K27-linked polyubiquitination of AIM2 by targeting on K64 sites of the lysine residues. In summary, emodin could hinder the activation of AIM2 inflammasome in UUO model mice through K27-linked polyubiquitination to reduce renal fibrosis. Emodin is a possible therapeutic option for CKD treatment.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emodin Inhibits AIM2 Inflammasome Activation via Modulating K27-Linked Polyubiquitination to Attenuate Renal Fibrosis.\",\"authors\":\"Lidan Lu, Ruonan Shuang, Fang Cao, Zhongwen Sun, Qingxue Wei, Tiantian Gao, Xuejing Gu, Kejian Wen, Xiaolan Cheng, Mingjia Gu\",\"doi\":\"10.1002/ptr.8390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic kidney diseases (CKD) is a serious threat to people's health with renal fibrosis as the major pathological feature. The absent in melanoma 2 (AIM2) has recently been proposed to play a critical role in CKD. Emodin is a major bioactive compound from rhubarb, which is widely used for clinical treatment of renal disease. The aim of this study is to elucidate the effect of emodin on unilateral ureteral obstruction (UUO) model mice and its association with the AIM2 inflammasome. In this study, we established the UUO-induced mice renal interstitial fibrosis in vivo and bone marrow-derived macrophages (BMDMs) model in vitro. The BUN, SCr, TNF-α, IL-1β in serum were examined. The degree of renal damage and fibrosis were determined by histological assessment. Immunofluorescence, western blot, and Co-IP were used to determine the mechanisms of emodin against CKD. Emodin could improve UUO-induced abnormal renal function and histopathological abnormalities. It could also ameliorate renal fibrosis, evidenced by inhibiting the expression of α-SMA, TGF-β1, FN, and collagen I. Mechanistically, emodin significantly suppressed AIM2 inflammasome as well as its components including ASC, cleaved caspase-1, and IL-1β both in vivo and in vitro. Further studies demonstrated that emodin inhibited K27-linked polyubiquitination of AIM2 by targeting on K64 sites of the lysine residues. In summary, emodin could hinder the activation of AIM2 inflammasome in UUO model mice through K27-linked polyubiquitination to reduce renal fibrosis. Emodin is a possible therapeutic option for CKD treatment.</p>\",\"PeriodicalId\":20110,\"journal\":{\"name\":\"Phytotherapy Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytotherapy Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ptr.8390\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8390","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Emodin Inhibits AIM2 Inflammasome Activation via Modulating K27-Linked Polyubiquitination to Attenuate Renal Fibrosis.
Chronic kidney diseases (CKD) is a serious threat to people's health with renal fibrosis as the major pathological feature. The absent in melanoma 2 (AIM2) has recently been proposed to play a critical role in CKD. Emodin is a major bioactive compound from rhubarb, which is widely used for clinical treatment of renal disease. The aim of this study is to elucidate the effect of emodin on unilateral ureteral obstruction (UUO) model mice and its association with the AIM2 inflammasome. In this study, we established the UUO-induced mice renal interstitial fibrosis in vivo and bone marrow-derived macrophages (BMDMs) model in vitro. The BUN, SCr, TNF-α, IL-1β in serum were examined. The degree of renal damage and fibrosis were determined by histological assessment. Immunofluorescence, western blot, and Co-IP were used to determine the mechanisms of emodin against CKD. Emodin could improve UUO-induced abnormal renal function and histopathological abnormalities. It could also ameliorate renal fibrosis, evidenced by inhibiting the expression of α-SMA, TGF-β1, FN, and collagen I. Mechanistically, emodin significantly suppressed AIM2 inflammasome as well as its components including ASC, cleaved caspase-1, and IL-1β both in vivo and in vitro. Further studies demonstrated that emodin inhibited K27-linked polyubiquitination of AIM2 by targeting on K64 sites of the lysine residues. In summary, emodin could hinder the activation of AIM2 inflammasome in UUO model mice through K27-linked polyubiquitination to reduce renal fibrosis. Emodin is a possible therapeutic option for CKD treatment.
期刊介绍:
Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field.
Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters.
By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.