Xin Xin, Linhan Ye, Tingting Zhai, Shu Wang, Yunjiao Pan, Ke Qu, Mengjie Gu, Yanjiao Wang, Jiedao Zhang, Xiang Li, Wei Yang, Shuxin Zhang
{"title":"细胞分裂周期 5 通过调控拟南芥开花基因的转录和剪接来控制花期转换。","authors":"Xin Xin, Linhan Ye, Tingting Zhai, Shu Wang, Yunjiao Pan, Ke Qu, Mengjie Gu, Yanjiao Wang, Jiedao Zhang, Xiang Li, Wei Yang, Shuxin Zhang","doi":"10.1093/plphys/kiae616","DOIUrl":null,"url":null,"abstract":"<p><p>CELL DIVISION CYCLE 5 (CDC5) is a R2R3-type MYB transcription factor, serving as a key component of Modifier of snc1, 4 (MOS4)-associated complex (MAC)/NineTeen Complex (NTC), which is associated with plant immunity, RNA splicing, and miRNA biogenesis. In this study, we demonstrate that mutation of CDC5 accelerates flowering in Arabidopsis (Arabidopsis thaliana). CDC5 activates the expression of FLOWERING LOCUS C (FLC) by binding to and affecting the enrichment of RNA polymerase II on FLC chromatin. Moreover, genetic analysis confirmed that CDC5 regulates flowering in an FLC-dependent manner. Furthermore, we characterized the interaction of CDC5 with the RNA polymerase-associated factor 1 (Paf1) complex and confirmed that CDC5, as part of the spliceosome, mediates genome-wide alternative splicing, as revealed by RNA-Seq. CDC5 affected the splicing of flowering-associated genes such as FLC, SEF, and MAFs. Additionally, we also demonstrated that CDC5 contributes to the regulation of histone modification of FLC chromatin, which further promotes FLC expression. In summary, our results establish CDC5 as a key factor regulating flowering. This provides valuable insight for future research into plant flowering.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CELL DIVISION CYCLE 5 controls floral transition by regulating flowering gene transcription and splicing in Arabidopsis.\",\"authors\":\"Xin Xin, Linhan Ye, Tingting Zhai, Shu Wang, Yunjiao Pan, Ke Qu, Mengjie Gu, Yanjiao Wang, Jiedao Zhang, Xiang Li, Wei Yang, Shuxin Zhang\",\"doi\":\"10.1093/plphys/kiae616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CELL DIVISION CYCLE 5 (CDC5) is a R2R3-type MYB transcription factor, serving as a key component of Modifier of snc1, 4 (MOS4)-associated complex (MAC)/NineTeen Complex (NTC), which is associated with plant immunity, RNA splicing, and miRNA biogenesis. In this study, we demonstrate that mutation of CDC5 accelerates flowering in Arabidopsis (Arabidopsis thaliana). CDC5 activates the expression of FLOWERING LOCUS C (FLC) by binding to and affecting the enrichment of RNA polymerase II on FLC chromatin. Moreover, genetic analysis confirmed that CDC5 regulates flowering in an FLC-dependent manner. Furthermore, we characterized the interaction of CDC5 with the RNA polymerase-associated factor 1 (Paf1) complex and confirmed that CDC5, as part of the spliceosome, mediates genome-wide alternative splicing, as revealed by RNA-Seq. CDC5 affected the splicing of flowering-associated genes such as FLC, SEF, and MAFs. Additionally, we also demonstrated that CDC5 contributes to the regulation of histone modification of FLC chromatin, which further promotes FLC expression. In summary, our results establish CDC5 as a key factor regulating flowering. This provides valuable insight for future research into plant flowering.</p>\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiae616\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae616","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
CELL DIVISION CYCLE 5 controls floral transition by regulating flowering gene transcription and splicing in Arabidopsis.
CELL DIVISION CYCLE 5 (CDC5) is a R2R3-type MYB transcription factor, serving as a key component of Modifier of snc1, 4 (MOS4)-associated complex (MAC)/NineTeen Complex (NTC), which is associated with plant immunity, RNA splicing, and miRNA biogenesis. In this study, we demonstrate that mutation of CDC5 accelerates flowering in Arabidopsis (Arabidopsis thaliana). CDC5 activates the expression of FLOWERING LOCUS C (FLC) by binding to and affecting the enrichment of RNA polymerase II on FLC chromatin. Moreover, genetic analysis confirmed that CDC5 regulates flowering in an FLC-dependent manner. Furthermore, we characterized the interaction of CDC5 with the RNA polymerase-associated factor 1 (Paf1) complex and confirmed that CDC5, as part of the spliceosome, mediates genome-wide alternative splicing, as revealed by RNA-Seq. CDC5 affected the splicing of flowering-associated genes such as FLC, SEF, and MAFs. Additionally, we also demonstrated that CDC5 contributes to the regulation of histone modification of FLC chromatin, which further promotes FLC expression. In summary, our results establish CDC5 as a key factor regulating flowering. This provides valuable insight for future research into plant flowering.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.