设计具有自精炼机制的可回收微米级 Na2S 阴极。

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Suwan Lu, Yang Liu, Jingjing Xu, Shixiao Weng, Jiangyan Xue, Lingwang Liu, Zhicheng Wang, Can Qian, Guochao Sun, Yiwen Gao, Qingyu Dong, Hong Li, Xiaodong Wu
{"title":"设计具有自精炼机制的可回收微米级 Na2S 阴极。","authors":"Suwan Lu, Yang Liu, Jingjing Xu, Shixiao Weng, Jiangyan Xue, Lingwang Liu, Zhicheng Wang, Can Qian, Guochao Sun, Yiwen Gao, Qingyu Dong, Hong Li, Xiaodong Wu","doi":"10.1038/s41467-024-54316-9","DOIUrl":null,"url":null,"abstract":"<p><p>Sodium sulfide (Na<sub>2</sub>S) as an initial cathode material in room-temperature sodium-sulfur batteries is conducive to get rid of the dependence on Na-metal anode. However, the micron-sized Na<sub>2</sub>S that accords with the practical requirements is obstructed due to poor kinetics and severe shuttle effect. Herein, a subtle strategy is proposed via regulating Na<sub>2</sub>S redeposition behaviours. By the synergistic effect from both conductive structure and cuprous sulfide (Cu<sub>2</sub>S) catalysis, the micron-sized Na<sub>2</sub>S particles are broken down and redeposited to nano-size during the initial cycle which can be fully utilized in subsequent cycles. Consequently, the Na<sub>2</sub>S/CPVP@Cu<sub>2</sub>S||Na cell delivers excellent cyclability (670 mAh g<sub>S</sub><sup>-1</sup> after 500 cycles) with a remarkable average Coulombic efficiency over 99.7% and rate capability (480 mAh g<sub>S</sub><sup>-1</sup> at 4 A g<sub>S</sub><sup>-1</sup>). Besides, the Na-free anodes are used to prove the application prospects. This work provides an innovative idea for utilizing micron-sized Na<sub>2</sub>S and offers insights into its conversion pathway.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"9995"},"PeriodicalIF":14.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573996/pdf/","citationCount":"0","resultStr":"{\"title\":\"Design towards recyclable micron-sized Na<sub>2</sub>S cathode with self-refinement mechanism.\",\"authors\":\"Suwan Lu, Yang Liu, Jingjing Xu, Shixiao Weng, Jiangyan Xue, Lingwang Liu, Zhicheng Wang, Can Qian, Guochao Sun, Yiwen Gao, Qingyu Dong, Hong Li, Xiaodong Wu\",\"doi\":\"10.1038/s41467-024-54316-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sodium sulfide (Na<sub>2</sub>S) as an initial cathode material in room-temperature sodium-sulfur batteries is conducive to get rid of the dependence on Na-metal anode. However, the micron-sized Na<sub>2</sub>S that accords with the practical requirements is obstructed due to poor kinetics and severe shuttle effect. Herein, a subtle strategy is proposed via regulating Na<sub>2</sub>S redeposition behaviours. By the synergistic effect from both conductive structure and cuprous sulfide (Cu<sub>2</sub>S) catalysis, the micron-sized Na<sub>2</sub>S particles are broken down and redeposited to nano-size during the initial cycle which can be fully utilized in subsequent cycles. Consequently, the Na<sub>2</sub>S/CPVP@Cu<sub>2</sub>S||Na cell delivers excellent cyclability (670 mAh g<sub>S</sub><sup>-1</sup> after 500 cycles) with a remarkable average Coulombic efficiency over 99.7% and rate capability (480 mAh g<sub>S</sub><sup>-1</sup> at 4 A g<sub>S</sub><sup>-1</sup>). Besides, the Na-free anodes are used to prove the application prospects. This work provides an innovative idea for utilizing micron-sized Na<sub>2</sub>S and offers insights into its conversion pathway.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"15 1\",\"pages\":\"9995\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573996/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54316-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54316-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

硫化钠(Na2S)作为常温钠硫电池的初始阴极材料,有利于摆脱对钠金属阳极的依赖。然而,符合实际要求的微米级 Na2S 却因动力学性能差和严重的穿梭效应而受阻。在此,我们提出了一种通过调节 Na2S 再沉积行为的微妙策略。在导电结构和硫化亚铜(Cu2S)催化作用的协同作用下,微米级的 Na2S 颗粒在初始循环中被分解并重新沉积为纳米级,并在后续循环中得到充分利用。因此,Na2S/CPVP@Cu2S||Na 电池具有出色的循环能力(500 次循环后为 670 mAh gS-1),平均库仑效率超过 99.7%,速率能力(4 A gS-1 时为 480 mAh gS-1)也十分突出。此外,还使用了不含 Na 的阳极来证明其应用前景。这项工作为利用微米级 Na2S 提供了一个创新思路,并为其转化途径提供了深入见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design towards recyclable micron-sized Na<sub>2</sub>S cathode with self-refinement mechanism.

Design towards recyclable micron-sized Na2S cathode with self-refinement mechanism.

Sodium sulfide (Na2S) as an initial cathode material in room-temperature sodium-sulfur batteries is conducive to get rid of the dependence on Na-metal anode. However, the micron-sized Na2S that accords with the practical requirements is obstructed due to poor kinetics and severe shuttle effect. Herein, a subtle strategy is proposed via regulating Na2S redeposition behaviours. By the synergistic effect from both conductive structure and cuprous sulfide (Cu2S) catalysis, the micron-sized Na2S particles are broken down and redeposited to nano-size during the initial cycle which can be fully utilized in subsequent cycles. Consequently, the Na2S/CPVP@Cu2S||Na cell delivers excellent cyclability (670 mAh gS-1 after 500 cycles) with a remarkable average Coulombic efficiency over 99.7% and rate capability (480 mAh gS-1 at 4 A gS-1). Besides, the Na-free anodes are used to prove the application prospects. This work provides an innovative idea for utilizing micron-sized Na2S and offers insights into its conversion pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信