Yunzhu Guo, Yangxin Li, Peng Su, Min Yan, Ming Wang, Shenjie Li, Wei Xiang, Ligang Chen, Wei Dong, Zhengjun Zhou, Jie Zhou
{"title":"肿瘤微管:高级别胶质瘤的潜在治疗新靶点","authors":"Yunzhu Guo, Yangxin Li, Peng Su, Min Yan, Ming Wang, Shenjie Li, Wei Xiang, Ligang Chen, Wei Dong, Zhengjun Zhou, Jie Zhou","doi":"10.1093/jnen/nlae119","DOIUrl":null,"url":null,"abstract":"<p><p>High-grade infiltrating gliomas are highly aggressive and fatal brain tumors that present significant challenges for research and treatment due to their complex microenvironment and tissue structure. Recent discovery of tumor microtubes (TMs) has provided new insights into how high-grade gliomas develop in the brain and resist treatment. TMs are unique, ultra-long, and highly functional membrane protrusions that form multicellular networks and play crucial roles in glioma invasiveness, drug resistance, recurrence, and heterogeneity. This review focuses on the different roles that TMs play in glioma cell communication, material transport, and tumor cell behavior. Specifically, non-connecting TMs primarily promote glioma invasiveness, likely related to their role in enhancing cell motility. On the other hand, interconnecting TMs form functional and communication networks by connecting with surrounding astrocytes and neurons, thereby promoting glioma malignancy. We summarize the factors that influence the formation of TMs in gliomas and current strategies targeting TMs. As the understanding of TMs advances, we are closer to uncovering whether they might be the long-sought Achilles' heel of treatment-resistant gliomas. By delving deeper into TMs research, we hope to develop more effective therapeutic strategies for patients with malignant gliomas.</p>","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tumor microtubes: A new potential therapeutic target for high-grade gliomas.\",\"authors\":\"Yunzhu Guo, Yangxin Li, Peng Su, Min Yan, Ming Wang, Shenjie Li, Wei Xiang, Ligang Chen, Wei Dong, Zhengjun Zhou, Jie Zhou\",\"doi\":\"10.1093/jnen/nlae119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-grade infiltrating gliomas are highly aggressive and fatal brain tumors that present significant challenges for research and treatment due to their complex microenvironment and tissue structure. Recent discovery of tumor microtubes (TMs) has provided new insights into how high-grade gliomas develop in the brain and resist treatment. TMs are unique, ultra-long, and highly functional membrane protrusions that form multicellular networks and play crucial roles in glioma invasiveness, drug resistance, recurrence, and heterogeneity. This review focuses on the different roles that TMs play in glioma cell communication, material transport, and tumor cell behavior. Specifically, non-connecting TMs primarily promote glioma invasiveness, likely related to their role in enhancing cell motility. On the other hand, interconnecting TMs form functional and communication networks by connecting with surrounding astrocytes and neurons, thereby promoting glioma malignancy. We summarize the factors that influence the formation of TMs in gliomas and current strategies targeting TMs. As the understanding of TMs advances, we are closer to uncovering whether they might be the long-sought Achilles' heel of treatment-resistant gliomas. By delving deeper into TMs research, we hope to develop more effective therapeutic strategies for patients with malignant gliomas.</p>\",\"PeriodicalId\":16682,\"journal\":{\"name\":\"Journal of Neuropathology and Experimental Neurology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuropathology and Experimental Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jnen/nlae119\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuropathology and Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jnen/nlae119","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Tumor microtubes: A new potential therapeutic target for high-grade gliomas.
High-grade infiltrating gliomas are highly aggressive and fatal brain tumors that present significant challenges for research and treatment due to their complex microenvironment and tissue structure. Recent discovery of tumor microtubes (TMs) has provided new insights into how high-grade gliomas develop in the brain and resist treatment. TMs are unique, ultra-long, and highly functional membrane protrusions that form multicellular networks and play crucial roles in glioma invasiveness, drug resistance, recurrence, and heterogeneity. This review focuses on the different roles that TMs play in glioma cell communication, material transport, and tumor cell behavior. Specifically, non-connecting TMs primarily promote glioma invasiveness, likely related to their role in enhancing cell motility. On the other hand, interconnecting TMs form functional and communication networks by connecting with surrounding astrocytes and neurons, thereby promoting glioma malignancy. We summarize the factors that influence the formation of TMs in gliomas and current strategies targeting TMs. As the understanding of TMs advances, we are closer to uncovering whether they might be the long-sought Achilles' heel of treatment-resistant gliomas. By delving deeper into TMs research, we hope to develop more effective therapeutic strategies for patients with malignant gliomas.
期刊介绍:
Journal of Neuropathology & Experimental Neurology is the official journal of the American Association of Neuropathologists, Inc. (AANP). The journal publishes peer-reviewed studies on neuropathology and experimental neuroscience, book reviews, letters, and Association news, covering a broad spectrum of fields in basic neuroscience with an emphasis on human neurological diseases. It is written by and for neuropathologists, neurologists, neurosurgeons, pathologists, psychiatrists, and basic neuroscientists from around the world. Publication has been continuous since 1942.