{"title":"低温胁迫对水稻产量影响的创新模型。","authors":"Yanying Shi, Haoyu Ma, Tao Li, Erjing Guo, Tianyi Zhang, Xijuan Zhang, Xianli Yang, Lizhi Wang, Shukun Jiang, Yuhan Deng, Kaixin Guan, Mingzhe Li, Zhijuan Liu, Xiaoguang Yang","doi":"10.1093/jxb/erae452","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing frequency and intensity of low-temperature events in temperate and cold rice production regions threaten rice yields under climate change. While process-based crop models can project climate impacts on rice yield, their accuracy under low-temperature conditions has not been well-evaluated. Our six-year chamber experiments revealed that low temperatures reduce spikelet fertility from panicle initiation to flowering, grain number per spike during panicle development, and grain weight during grain filling. We examined the algorithms of spikelet fertility response to temperature used in crop models. Results showed that simulation performance is poor for crop yields if the same function was used at different growth stages outside the booting stage. Indeed, we replaced a parameter spikelet fertility algorithm of the ORYZA model and developed the function of estimating grain number per spike and grain weight. After that, the improved equation algorithm was applied to 10 rice growth models. New functions considered the harmful effects of low temperatures on rice yield at different stages. In addition, the threshold temperatures of the cold tolerance were set for different rice varieties. The improved algorithm enhances the model's ability to simulate rice yields under climate change, providing a more reliable tool for adapting rice production to future climatic challenges.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative modeling on the effects of low-temperature stress on rice yields.\",\"authors\":\"Yanying Shi, Haoyu Ma, Tao Li, Erjing Guo, Tianyi Zhang, Xijuan Zhang, Xianli Yang, Lizhi Wang, Shukun Jiang, Yuhan Deng, Kaixin Guan, Mingzhe Li, Zhijuan Liu, Xiaoguang Yang\",\"doi\":\"10.1093/jxb/erae452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The increasing frequency and intensity of low-temperature events in temperate and cold rice production regions threaten rice yields under climate change. While process-based crop models can project climate impacts on rice yield, their accuracy under low-temperature conditions has not been well-evaluated. Our six-year chamber experiments revealed that low temperatures reduce spikelet fertility from panicle initiation to flowering, grain number per spike during panicle development, and grain weight during grain filling. We examined the algorithms of spikelet fertility response to temperature used in crop models. Results showed that simulation performance is poor for crop yields if the same function was used at different growth stages outside the booting stage. Indeed, we replaced a parameter spikelet fertility algorithm of the ORYZA model and developed the function of estimating grain number per spike and grain weight. After that, the improved equation algorithm was applied to 10 rice growth models. New functions considered the harmful effects of low temperatures on rice yield at different stages. In addition, the threshold temperatures of the cold tolerance were set for different rice varieties. The improved algorithm enhances the model's ability to simulate rice yields under climate change, providing a more reliable tool for adapting rice production to future climatic challenges.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/erae452\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae452","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Innovative modeling on the effects of low-temperature stress on rice yields.
The increasing frequency and intensity of low-temperature events in temperate and cold rice production regions threaten rice yields under climate change. While process-based crop models can project climate impacts on rice yield, their accuracy under low-temperature conditions has not been well-evaluated. Our six-year chamber experiments revealed that low temperatures reduce spikelet fertility from panicle initiation to flowering, grain number per spike during panicle development, and grain weight during grain filling. We examined the algorithms of spikelet fertility response to temperature used in crop models. Results showed that simulation performance is poor for crop yields if the same function was used at different growth stages outside the booting stage. Indeed, we replaced a parameter spikelet fertility algorithm of the ORYZA model and developed the function of estimating grain number per spike and grain weight. After that, the improved equation algorithm was applied to 10 rice growth models. New functions considered the harmful effects of low temperatures on rice yield at different stages. In addition, the threshold temperatures of the cold tolerance were set for different rice varieties. The improved algorithm enhances the model's ability to simulate rice yields under climate change, providing a more reliable tool for adapting rice production to future climatic challenges.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.