使用绿色可回收纤维素微晶(CMCs)吸附剂批量和连续固定床吸附酸性矿山排水(AMD)中的铜(II)。

IF 1.9 4区 环境科学与生态学 Q4 ENGINEERING, ENVIRONMENTAL
Musamba Banza, Tumisang Seodigeng, Sibali Linda, Mwabanua Mutabi Christian, Sebastien Owona, Papy Musampa
{"title":"使用绿色可回收纤维素微晶(CMCs)吸附剂批量和连续固定床吸附酸性矿山排水(AMD)中的铜(II)。","authors":"Musamba Banza, Tumisang Seodigeng, Sibali Linda, Mwabanua Mutabi Christian, Sebastien Owona, Papy Musampa","doi":"10.1080/10934529.2024.2429284","DOIUrl":null,"url":null,"abstract":"<p><p>The CMCs are viable materials for applications in industry and process innovation for removing heavy metal ions since they may be used in static and dynamic adsorption processes. It is necessary to develop simple, low-cost water treatment methods that use organic, biodegradable polymers such as nanomaterial-modified cellulose microcrystals. The column technique was used to investigate the effects of operational parameters such as pH, bed depth, concentration and flow rate. The input concentrations of 20, 40, 80 and 120 mg L<sup>-1</sup>, feed flow rates of 5, 10, 15 and 20 mL min<sup>-1</sup>, and bed heights of 5, 7.5, 10 and 12.5 cm. Experimental findings showed that the adsorption capacity decreased with increasing flow rate and increased with bed depth and input concentration, which were among the breakthrough parameters evaluated. The optimum adsorption capacity of 258.09 ± 0.96 mg g<sup>-1</sup> was found to be achieved with an ideal pH of 6, an initial concentration of 200 mg L<sup>-1</sup>, a contact period of 300 min, and a dosage of 5 g/200 mL. The Langmuir model best fits the adsorption of indigo carmine, whereas the pseudo-second-order model, which governs the adsorption mechanism, may be described by physisorption combined with chemisorption. From a thermodynamic perspective, the adsorption was exothermic and spontaneous. In continuous adsorption, the Yoon-Nelson and Thomas models provided a good match for the hole curve, whereas the Bohart-Adams model fitted the breakthrough curve's initial portion ((C<sub>t</sub>/C<sub>0</sub>) <0.5) perfectly. A three-dimensional adsorbent that has been chemically modified. The chemically modified CMCs adsorbent was characterized using FTIR, SEM and TGA.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"1-11"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Batch and continuous fixed bed adsorption of copper (II) from acid mine drainage (AMD) using green and recyclable adsorbent from cellulose microcrystals (CMCs).\",\"authors\":\"Musamba Banza, Tumisang Seodigeng, Sibali Linda, Mwabanua Mutabi Christian, Sebastien Owona, Papy Musampa\",\"doi\":\"10.1080/10934529.2024.2429284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The CMCs are viable materials for applications in industry and process innovation for removing heavy metal ions since they may be used in static and dynamic adsorption processes. It is necessary to develop simple, low-cost water treatment methods that use organic, biodegradable polymers such as nanomaterial-modified cellulose microcrystals. The column technique was used to investigate the effects of operational parameters such as pH, bed depth, concentration and flow rate. The input concentrations of 20, 40, 80 and 120 mg L<sup>-1</sup>, feed flow rates of 5, 10, 15 and 20 mL min<sup>-1</sup>, and bed heights of 5, 7.5, 10 and 12.5 cm. Experimental findings showed that the adsorption capacity decreased with increasing flow rate and increased with bed depth and input concentration, which were among the breakthrough parameters evaluated. The optimum adsorption capacity of 258.09 ± 0.96 mg g<sup>-1</sup> was found to be achieved with an ideal pH of 6, an initial concentration of 200 mg L<sup>-1</sup>, a contact period of 300 min, and a dosage of 5 g/200 mL. The Langmuir model best fits the adsorption of indigo carmine, whereas the pseudo-second-order model, which governs the adsorption mechanism, may be described by physisorption combined with chemisorption. From a thermodynamic perspective, the adsorption was exothermic and spontaneous. In continuous adsorption, the Yoon-Nelson and Thomas models provided a good match for the hole curve, whereas the Bohart-Adams model fitted the breakthrough curve's initial portion ((C<sub>t</sub>/C<sub>0</sub>) <0.5) perfectly. A three-dimensional adsorbent that has been chemically modified. The chemically modified CMCs adsorbent was characterized using FTIR, SEM and TGA.</p>\",\"PeriodicalId\":15671,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2024.2429284\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2024.2429284","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

由于 CMC 可用于静态和动态吸附过程,因此是工业应用和工艺创新中去除重金属离子的可行材料。有必要开发使用有机、可生物降解聚合物(如纳米材料改性纤维素微晶)的简单、低成本水处理方法。采用柱技术研究了 pH 值、床层深度、浓度和流速等操作参数的影响。输入浓度分别为 20、40、80 和 120 mg L-1,进料流速分别为 5、10、15 和 20 mL min-1,床层高度分别为 5、7.5、10 和 12.5 cm。实验结果表明,吸附容量随流速的增加而减少,随床层深度和输入浓度的增加而增加,这也是所评估的突破性参数之一。在理想 pH 值为 6、初始浓度为 200 mg L-1、接触时间为 300 分钟、用量为 5 g/200 mL 的条件下,最佳吸附容量为 258.09 ± 0.96 mg g-1。朗缪尔模型最适合靛蓝胭脂红的吸附,而支配吸附机理的假二阶模型可能是由物理吸附结合化学吸附来描述的。从热力学角度看,吸附是放热和自发的。在连续吸附过程中,Yoon-Nelson 和 Thomas 模型很好地匹配了空穴曲线,而 Bohart-Adams 模型则拟合了突破曲线的初始部分((Ct/C0)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Batch and continuous fixed bed adsorption of copper (II) from acid mine drainage (AMD) using green and recyclable adsorbent from cellulose microcrystals (CMCs).

The CMCs are viable materials for applications in industry and process innovation for removing heavy metal ions since they may be used in static and dynamic adsorption processes. It is necessary to develop simple, low-cost water treatment methods that use organic, biodegradable polymers such as nanomaterial-modified cellulose microcrystals. The column technique was used to investigate the effects of operational parameters such as pH, bed depth, concentration and flow rate. The input concentrations of 20, 40, 80 and 120 mg L-1, feed flow rates of 5, 10, 15 and 20 mL min-1, and bed heights of 5, 7.5, 10 and 12.5 cm. Experimental findings showed that the adsorption capacity decreased with increasing flow rate and increased with bed depth and input concentration, which were among the breakthrough parameters evaluated. The optimum adsorption capacity of 258.09 ± 0.96 mg g-1 was found to be achieved with an ideal pH of 6, an initial concentration of 200 mg L-1, a contact period of 300 min, and a dosage of 5 g/200 mL. The Langmuir model best fits the adsorption of indigo carmine, whereas the pseudo-second-order model, which governs the adsorption mechanism, may be described by physisorption combined with chemisorption. From a thermodynamic perspective, the adsorption was exothermic and spontaneous. In continuous adsorption, the Yoon-Nelson and Thomas models provided a good match for the hole curve, whereas the Bohart-Adams model fitted the breakthrough curve's initial portion ((Ct/C0) <0.5) perfectly. A three-dimensional adsorbent that has been chemically modified. The chemically modified CMCs adsorbent was characterized using FTIR, SEM and TGA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
4.80%
发文量
93
审稿时长
3.0 months
期刊介绍: 14 issues per year Abstracted/indexed in: BioSciences Information Service of Biological Abstracts (BIOSIS), CAB ABSTRACTS, CEABA, Chemical Abstracts & Chemical Safety NewsBase, Current Contents/Agriculture, Biology, and Environmental Sciences, Elsevier BIOBASE/Current Awareness in Biological Sciences, EMBASE/Excerpta Medica, Engineering Index/COMPENDEX PLUS, Environment Abstracts, Environmental Periodicals Bibliography & INIST-Pascal/CNRS, National Agriculture Library-AGRICOLA, NIOSHTIC & Pollution Abstracts, PubSCIENCE, Reference Update, Research Alert & Science Citation Index Expanded (SCIE), Water Resources Abstracts and Index Medicus/MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信