{"title":"β-catenin干扰会减少巨噬细胞外泌体α-SNAP,阻碍急性肝损伤中Treg的分化。","authors":"Ruobin Zong, Yujie Liu, Mengya Zhang, Buwei Liu, Wei Zhang, Hankun Hu, Changyong Li","doi":"10.1172/jci.insight.182515","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatic macrophages and regulatory T cells (Tregs) play an important role in the maintenance of liver immune homeostasis, but the mechanism by which hepatic macrophages regulate Tregs in acute liver injury remains largely unknown. Here, we found that the hepatic Treg proportion and β-catenin expression in hepatic macrophages were associated with acetaminophen (APAP) and D-galactosamine (D-GalN)/ lipopolysaccharide (LPS)-induced acute liver injury. Interestingly, β-catenin was markedly upregulated only in infiltrating macrophages, but not in resident Kupffer cells. Myeloid-specific β-catenin knockout mice showed an increased inflammatory cell infiltration and hepatocyte apoptosis. Moreover, myeloid β-catenin deficiency decreased the hepatic Treg proportion in the injured liver. Mechanistically, in vitro co-culture experiments revealed that macrophage β-catenin modulated its exosome composition, and influenced Treg differentiation. Using mass spectrometry-based proteomics, we identified that macrophage β-catenin activation increased the level of exosomal α-SNAP, which in turn promoted Treg differentiation. Overall, our findings demonstrated a molecular mechanism that macrophage β-catenin regulated the Treg proportion in the liver by enhancing the expression of exosomal α-SNAP, providing insights into the pathophysiology of acute liver injury.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"β-catenin disruption decreases macrophage exosomal α-SNAP and impedes Treg differentiation in acute liver injury.\",\"authors\":\"Ruobin Zong, Yujie Liu, Mengya Zhang, Buwei Liu, Wei Zhang, Hankun Hu, Changyong Li\",\"doi\":\"10.1172/jci.insight.182515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatic macrophages and regulatory T cells (Tregs) play an important role in the maintenance of liver immune homeostasis, but the mechanism by which hepatic macrophages regulate Tregs in acute liver injury remains largely unknown. Here, we found that the hepatic Treg proportion and β-catenin expression in hepatic macrophages were associated with acetaminophen (APAP) and D-galactosamine (D-GalN)/ lipopolysaccharide (LPS)-induced acute liver injury. Interestingly, β-catenin was markedly upregulated only in infiltrating macrophages, but not in resident Kupffer cells. Myeloid-specific β-catenin knockout mice showed an increased inflammatory cell infiltration and hepatocyte apoptosis. Moreover, myeloid β-catenin deficiency decreased the hepatic Treg proportion in the injured liver. Mechanistically, in vitro co-culture experiments revealed that macrophage β-catenin modulated its exosome composition, and influenced Treg differentiation. Using mass spectrometry-based proteomics, we identified that macrophage β-catenin activation increased the level of exosomal α-SNAP, which in turn promoted Treg differentiation. Overall, our findings demonstrated a molecular mechanism that macrophage β-catenin regulated the Treg proportion in the liver by enhancing the expression of exosomal α-SNAP, providing insights into the pathophysiology of acute liver injury.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.182515\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.182515","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
β-catenin disruption decreases macrophage exosomal α-SNAP and impedes Treg differentiation in acute liver injury.
Hepatic macrophages and regulatory T cells (Tregs) play an important role in the maintenance of liver immune homeostasis, but the mechanism by which hepatic macrophages regulate Tregs in acute liver injury remains largely unknown. Here, we found that the hepatic Treg proportion and β-catenin expression in hepatic macrophages were associated with acetaminophen (APAP) and D-galactosamine (D-GalN)/ lipopolysaccharide (LPS)-induced acute liver injury. Interestingly, β-catenin was markedly upregulated only in infiltrating macrophages, but not in resident Kupffer cells. Myeloid-specific β-catenin knockout mice showed an increased inflammatory cell infiltration and hepatocyte apoptosis. Moreover, myeloid β-catenin deficiency decreased the hepatic Treg proportion in the injured liver. Mechanistically, in vitro co-culture experiments revealed that macrophage β-catenin modulated its exosome composition, and influenced Treg differentiation. Using mass spectrometry-based proteomics, we identified that macrophage β-catenin activation increased the level of exosomal α-SNAP, which in turn promoted Treg differentiation. Overall, our findings demonstrated a molecular mechanism that macrophage β-catenin regulated the Treg proportion in the liver by enhancing the expression of exosomal α-SNAP, providing insights into the pathophysiology of acute liver injury.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.