优化数控铣削参数,制造具有不同尖端角度的超尖微针。

IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Hong-Phuc Pham, Van-Toi Vo, Thanh-Qua Nguyen
{"title":"优化数控铣削参数,制造具有不同尖端角度的超尖微针。","authors":"Hong-Phuc Pham, Van-Toi Vo, Thanh-Qua Nguyen","doi":"10.1007/s13346-024-01740-5","DOIUrl":null,"url":null,"abstract":"<p><p>Microneedle technology has emerged as an advanced method for transdermal drug delivery, which focuses on diverse fabrication techniques to develop microneedles with various models and geometries. This study explores the application of Computer Numerical Control (CNC) milling technology to create microneedle master molds with extremely sharp tips. We examined the effects of two key machining parameters, feed rate and ramp angle, on the tip sharpness of the microneedles. Our results showed that increasing both the feed rate and ramp angle could significantly reduce machining time. However, a higher feed rate also led to larger tip diameters and notable tip defects. Conversely, changes in the ramp angle at a constant feed rate had minimal impact on tip size. We identified an optimal condition balancing cutting time and tip sharpness at a feed rate of 100 mm/min and a ramp angle of 1.5°. Additionally, we assessed the CNC's capability to produce needles with different tip angles. The findings confirm that needles with varying tip angles maintained tip diameters below 10 μm, with needles having a 50° tip angle exhibiting the sharpest tips at approximately 3.3 μm. Further compression, insertion and diffusion tests were conducted to evaluate the performance of needles with different geometries.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing CNC milling parameters for manufacturing of ultra-sharp tip microneedle with various tip angles.\",\"authors\":\"Hong-Phuc Pham, Van-Toi Vo, Thanh-Qua Nguyen\",\"doi\":\"10.1007/s13346-024-01740-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microneedle technology has emerged as an advanced method for transdermal drug delivery, which focuses on diverse fabrication techniques to develop microneedles with various models and geometries. This study explores the application of Computer Numerical Control (CNC) milling technology to create microneedle master molds with extremely sharp tips. We examined the effects of two key machining parameters, feed rate and ramp angle, on the tip sharpness of the microneedles. Our results showed that increasing both the feed rate and ramp angle could significantly reduce machining time. However, a higher feed rate also led to larger tip diameters and notable tip defects. Conversely, changes in the ramp angle at a constant feed rate had minimal impact on tip size. We identified an optimal condition balancing cutting time and tip sharpness at a feed rate of 100 mm/min and a ramp angle of 1.5°. Additionally, we assessed the CNC's capability to produce needles with different tip angles. The findings confirm that needles with varying tip angles maintained tip diameters below 10 μm, with needles having a 50° tip angle exhibiting the sharpest tips at approximately 3.3 μm. Further compression, insertion and diffusion tests were conducted to evaluate the performance of needles with different geometries.</p>\",\"PeriodicalId\":11357,\"journal\":{\"name\":\"Drug Delivery and Translational Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery and Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13346-024-01740-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01740-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

微针技术已成为一种先进的透皮给药方法,其重点是利用各种制造技术来开发各种型号和几何形状的微针。本研究探讨了如何应用计算机数控(CNC)铣削技术来制造尖端极其锋利的微针母模。我们研究了进给量和斜坡角这两个关键加工参数对微针尖部锋利度的影响。结果表明,提高进给速度和斜坡角度可显著缩短加工时间。但是,进给速率越大,针尖直径越大,针尖缺陷也越明显。相反,在进给量不变的情况下,斜坡角的变化对针尖尺寸的影响很小。我们确定了进给速度为 100 mm/min、斜坡角为 1.5° 时平衡切削时间和刀尖锋利度的最佳条件。此外,我们还评估了 CNC 生产不同针尖角度织针的能力。结果证实,不同针尖角的针尖直径均低于 10 μm,其中针尖角为 50° 的针尖最锋利,约为 3.3 μm。为评估不同几何形状针的性能,还进行了进一步的压缩、插入和扩散测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing CNC milling parameters for manufacturing of ultra-sharp tip microneedle with various tip angles.

Microneedle technology has emerged as an advanced method for transdermal drug delivery, which focuses on diverse fabrication techniques to develop microneedles with various models and geometries. This study explores the application of Computer Numerical Control (CNC) milling technology to create microneedle master molds with extremely sharp tips. We examined the effects of two key machining parameters, feed rate and ramp angle, on the tip sharpness of the microneedles. Our results showed that increasing both the feed rate and ramp angle could significantly reduce machining time. However, a higher feed rate also led to larger tip diameters and notable tip defects. Conversely, changes in the ramp angle at a constant feed rate had minimal impact on tip size. We identified an optimal condition balancing cutting time and tip sharpness at a feed rate of 100 mm/min and a ramp angle of 1.5°. Additionally, we assessed the CNC's capability to produce needles with different tip angles. The findings confirm that needles with varying tip angles maintained tip diameters below 10 μm, with needles having a 50° tip angle exhibiting the sharpest tips at approximately 3.3 μm. Further compression, insertion and diffusion tests were conducted to evaluate the performance of needles with different geometries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Delivery and Translational Research
Drug Delivery and Translational Research MEDICINE, RESEARCH & EXPERIMENTALPHARMACOL-PHARMACOLOGY & PHARMACY
CiteScore
11.70
自引率
1.90%
发文量
160
期刊介绍: The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions. Research focused on the following areas of translational drug delivery research will be considered for publication in the journal. Designing and developing novel drug delivery systems, with a focus on their application to disease conditions; Preclinical and clinical data related to drug delivery systems; Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes Short-term and long-term biocompatibility of drug delivery systems, host response; Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering; Image-guided drug therapy, Nanomedicine; Devices for drug delivery and drug/device combination products. In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信