Bence Szabó-Szőcs, Máté Ficzere, Orsolya Péterfi, Dorián László Galata
{"title":"利用近红外光谱、拉曼光谱和数据融合技术同时预测薄膜包衣片剂的原料药浓度和增重。","authors":"Bence Szabó-Szőcs, Máté Ficzere, Orsolya Péterfi, Dorián László Galata","doi":"10.1016/j.ijpharm.2024.124957","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the simultaneous prediction of active pharmaceutical ingredient (API) concentration and mass gain in film-coated tablets using Partial Least Squares (PLS) regression combined with three data fusion (DF) techniques: Low-Level (LLDF), Mid-Level (MLDF), and High-Level (HLDF). Near-Infrared (NIR) and Raman spectroscopy were utilized in both reflection and transmission modes, providing four types of spectral data per tablet. Transmission models proved more effective for API prediction by capturing data from the entire tablet, while reflection models excelled in assessing mass gain by focusing on the surface layer. Among the DF strategies, MLDF with Principal Component Analysis (PCA) offered the most significant improvements in predictive accuracy by filtering out irrelevant information. Variable selection methods further enhanced model performance by reducing the number of latent variables required. Overall, the integration of multiple spectral datasets and DF techniques resulted in models that gave predictions for evaluation samples with lower errors, demonstrating their potential to optimize quality control in pharmaceutical manufacturing.</p>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":" ","pages":"124957"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous prediction of the API concentration and mass gain of film coated tablets using Near-Infrared and Raman spectroscopy and data fusion.\",\"authors\":\"Bence Szabó-Szőcs, Máté Ficzere, Orsolya Péterfi, Dorián László Galata\",\"doi\":\"10.1016/j.ijpharm.2024.124957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the simultaneous prediction of active pharmaceutical ingredient (API) concentration and mass gain in film-coated tablets using Partial Least Squares (PLS) regression combined with three data fusion (DF) techniques: Low-Level (LLDF), Mid-Level (MLDF), and High-Level (HLDF). Near-Infrared (NIR) and Raman spectroscopy were utilized in both reflection and transmission modes, providing four types of spectral data per tablet. Transmission models proved more effective for API prediction by capturing data from the entire tablet, while reflection models excelled in assessing mass gain by focusing on the surface layer. Among the DF strategies, MLDF with Principal Component Analysis (PCA) offered the most significant improvements in predictive accuracy by filtering out irrelevant information. Variable selection methods further enhanced model performance by reducing the number of latent variables required. Overall, the integration of multiple spectral datasets and DF techniques resulted in models that gave predictions for evaluation samples with lower errors, demonstrating their potential to optimize quality control in pharmaceutical manufacturing.</p>\",\"PeriodicalId\":14187,\"journal\":{\"name\":\"International Journal of Pharmaceutics\",\"volume\":\" \",\"pages\":\"124957\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijpharm.2024.124957\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijpharm.2024.124957","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Simultaneous prediction of the API concentration and mass gain of film coated tablets using Near-Infrared and Raman spectroscopy and data fusion.
This study investigates the simultaneous prediction of active pharmaceutical ingredient (API) concentration and mass gain in film-coated tablets using Partial Least Squares (PLS) regression combined with three data fusion (DF) techniques: Low-Level (LLDF), Mid-Level (MLDF), and High-Level (HLDF). Near-Infrared (NIR) and Raman spectroscopy were utilized in both reflection and transmission modes, providing four types of spectral data per tablet. Transmission models proved more effective for API prediction by capturing data from the entire tablet, while reflection models excelled in assessing mass gain by focusing on the surface layer. Among the DF strategies, MLDF with Principal Component Analysis (PCA) offered the most significant improvements in predictive accuracy by filtering out irrelevant information. Variable selection methods further enhanced model performance by reducing the number of latent variables required. Overall, the integration of multiple spectral datasets and DF techniques resulted in models that gave predictions for evaluation samples with lower errors, demonstrating their potential to optimize quality control in pharmaceutical manufacturing.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.