Seungjoo Baik, Seonghwa Hong, Hyun Joo Kim, Heon Sang Jeong, Hana Lee, Junsoo Lee
{"title":"文竹酰胺 A、B 和 C 对 EA.hy926 细胞中 H2O2 诱导的内皮功能障碍的相对保护活性。","authors":"Seungjoo Baik, Seonghwa Hong, Hyun Joo Kim, Heon Sang Jeong, Hana Lee, Junsoo Lee","doi":"10.1093/bbb/zbae170","DOIUrl":null,"url":null,"abstract":"<p><p>This study compared the antihypertensive effects of avenanthramides A, B, and C, with a focus on their antioxidant and anti-inflammatory properties. Treatment with avenanthramides A, B, and C (50 μm) significantly enhanced cell viability and nitric oxide production in H2O2-induced endothelial dysfunction in EA.hy926 cells. Avenanthramides notably increased the levels of antioxidant enzymes and glutathione while reducing malondialdehyde and reactive oxygen species. Moreover, avenanthramides promoted the Nrf2 translocation to nucleus, enhancing the expression of antioxidant enzymes. Furthermore, avenanthramides inhibited the protein levels of iNOS and COX-2, as well as the phosphorylation of IkBα and translocation of p65, thereby mitigating endothelial inflammation. Molecular docking analysis revealed that avenanthramide A exhibited the strongest binding affinity for HO-1 and iNOS, which was correlated with its superior biological activity. Overall, by upregulating Nrf2/HO-1 pathways and downregulating NF-kB pathways, avenanthramides show potential as therapeutic agents for the treatment of endothelial dysfunction.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":"268-274"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative protective activities of avenanthramide A, B, and C against H2O2-induced endothelial dysfunction in EA.hy926 cells.\",\"authors\":\"Seungjoo Baik, Seonghwa Hong, Hyun Joo Kim, Heon Sang Jeong, Hana Lee, Junsoo Lee\",\"doi\":\"10.1093/bbb/zbae170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study compared the antihypertensive effects of avenanthramides A, B, and C, with a focus on their antioxidant and anti-inflammatory properties. Treatment with avenanthramides A, B, and C (50 μm) significantly enhanced cell viability and nitric oxide production in H2O2-induced endothelial dysfunction in EA.hy926 cells. Avenanthramides notably increased the levels of antioxidant enzymes and glutathione while reducing malondialdehyde and reactive oxygen species. Moreover, avenanthramides promoted the Nrf2 translocation to nucleus, enhancing the expression of antioxidant enzymes. Furthermore, avenanthramides inhibited the protein levels of iNOS and COX-2, as well as the phosphorylation of IkBα and translocation of p65, thereby mitigating endothelial inflammation. Molecular docking analysis revealed that avenanthramide A exhibited the strongest binding affinity for HO-1 and iNOS, which was correlated with its superior biological activity. Overall, by upregulating Nrf2/HO-1 pathways and downregulating NF-kB pathways, avenanthramides show potential as therapeutic agents for the treatment of endothelial dysfunction.</p>\",\"PeriodicalId\":9175,\"journal\":{\"name\":\"Bioscience, Biotechnology, and Biochemistry\",\"volume\":\" \",\"pages\":\"268-274\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience, Biotechnology, and Biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/bbb/zbae170\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae170","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Relative protective activities of avenanthramide A, B, and C against H2O2-induced endothelial dysfunction in EA.hy926 cells.
This study compared the antihypertensive effects of avenanthramides A, B, and C, with a focus on their antioxidant and anti-inflammatory properties. Treatment with avenanthramides A, B, and C (50 μm) significantly enhanced cell viability and nitric oxide production in H2O2-induced endothelial dysfunction in EA.hy926 cells. Avenanthramides notably increased the levels of antioxidant enzymes and glutathione while reducing malondialdehyde and reactive oxygen species. Moreover, avenanthramides promoted the Nrf2 translocation to nucleus, enhancing the expression of antioxidant enzymes. Furthermore, avenanthramides inhibited the protein levels of iNOS and COX-2, as well as the phosphorylation of IkBα and translocation of p65, thereby mitigating endothelial inflammation. Molecular docking analysis revealed that avenanthramide A exhibited the strongest binding affinity for HO-1 and iNOS, which was correlated with its superior biological activity. Overall, by upregulating Nrf2/HO-1 pathways and downregulating NF-kB pathways, avenanthramides show potential as therapeutic agents for the treatment of endothelial dysfunction.
期刊介绍:
Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).