Jeonghyun Kim, Kotone Niioka, Eijiro Maeda, Takeo Matsumoto
{"title":"应用静水压可上调成骨细胞球体内的 sost 基因表达。","authors":"Jeonghyun Kim, Kotone Niioka, Eijiro Maeda, Takeo Matsumoto","doi":"10.1093/bbb/zbae165","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we developed a hydrostatic pressurizing chamber capable of applying hydrostatic pressure to osteocytic spheroids derived from mouse osteoblastic MC3T3-E1 cells. Our results demonstrate that a 4-hour exposure to 200 kPa of hydrostatic pressure did not alter the apparent morphology of the spheroids. However, gene expression analysis revealed a significant up-regulation of Sost, marker of late-stage osteocyte differentiation.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of hydrostatic pressure up-regulates sost gene expression in osteocytic spheroids.\",\"authors\":\"Jeonghyun Kim, Kotone Niioka, Eijiro Maeda, Takeo Matsumoto\",\"doi\":\"10.1093/bbb/zbae165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we developed a hydrostatic pressurizing chamber capable of applying hydrostatic pressure to osteocytic spheroids derived from mouse osteoblastic MC3T3-E1 cells. Our results demonstrate that a 4-hour exposure to 200 kPa of hydrostatic pressure did not alter the apparent morphology of the spheroids. However, gene expression analysis revealed a significant up-regulation of Sost, marker of late-stage osteocyte differentiation.</p>\",\"PeriodicalId\":9175,\"journal\":{\"name\":\"Bioscience, Biotechnology, and Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience, Biotechnology, and Biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/bbb/zbae165\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae165","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Application of hydrostatic pressure up-regulates sost gene expression in osteocytic spheroids.
In this study, we developed a hydrostatic pressurizing chamber capable of applying hydrostatic pressure to osteocytic spheroids derived from mouse osteoblastic MC3T3-E1 cells. Our results demonstrate that a 4-hour exposure to 200 kPa of hydrostatic pressure did not alter the apparent morphology of the spheroids. However, gene expression analysis revealed a significant up-regulation of Sost, marker of late-stage osteocyte differentiation.
期刊介绍:
Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).